PERTURBATION THEORY FOR LYAPUNOV EXPONENTS OF A TORAL MAP: EXTENSION OF A RESULT OF SHUB AND WILKINSON

BY

DAVID RUELLE

Department of Mathematics, Rutgers University New Brunswick, NJ 08854, USA and IHES, 35 route de Chartres, 91440 Bures sur Yvette, France e-mail: ruelle@ihes.fr

ABSTRACT

Starting from a hyperbolic toral automorphism times a rotation of the circle, we obtain, for a small volume preserving perturbation, an exact and rigorous second order perturbation expansion of the Lyapunov exponents.

Introduction

We consider volume preserving perturbations F of a diffeomorphism $F_0 = (\Phi, J)$ of $\mathbf{T}^{m+1} = \mathbf{T}^m \times \mathbf{T}$, where Φ is a hyperbolic automorphism of \mathbf{T}^m , and J is a translation of \mathbf{T} . Writing $F = F_0 + aF'$, we shall show that the Lyapunov exponents for (F, volume) can be expanded to second order in a (Theorem 1). In particular, the central Lyapunov exponent λ^c of (F, volume), to second order in a, is generally $\neq 0$ (Corollary 11). For a special family of perturbations one obtains particularly simple formulae, first noted by Shub and Wilkinson [17]. We recover their result in Theorem 12. We deviate from [17] mostly in that we don't have differentiability of λ^c , only a second order expansion around a = 0. The ideas used here are largely those in Shub and Wilkinson [17], and can be appreciated in the background provided by Hirsh, Pugh and Shub [9], Burns and Wilkinson [5], Ruelle and Wilkinson [16], Niţică and Török [12], Pugh, Shub and Wilkinson

Received January 7, 2002

[14]. Among older regularity results let us mention Katok, Knieper and Weiss [11], Flaminio [9], Ruelle [15]. For recent work concerning Lyapunov exponents, see Bonatti, Gómez-Mont and Viana [3], Avila and Bochi [2]. Closely related to the subject of the present paper are the references [4] and [6].

After completing the writing of this paper, the author received a preprint by D. Dolgopyat [7], which develops similar ideas in a more general setting, but without the specific formulas we obtain here.

1. Theorem

Let Φ be a hyperbolic automorphism of \mathbf{T}^m , and $J: y \mapsto y + \alpha \pmod{1}$ a translation of \mathbf{T} . Define $F_0 = (\Phi, J)$, and let $F = F_0 + aF'(+\text{higher order in } a)$ be a C^2 perturbation of F_0 , volume preserving to first order in a. (We take $F': \mathbf{T}^{m+1} \mapsto \mathbf{R}^{m+1}$ and $F_0\xi + aF'(\xi)$ has to be understood (mod 1) in each component.) Let $\lambda_1 < \lambda_2 < \cdots$ be the Lyapunov exponents of (F_0, volume) and m_1, m_2, \ldots their multiplicities (the exponent = 0 occurs with multiplicity 1). Also let $\lambda_a^{(1)} \leq \lambda_a^{(2)} \leq \cdots$ be the Lyapunov exponents of (F, volume) repeated according to multiplicity. Then we have the second order expansion

$$\sum_{\ell=m_1+\dots+m_{r-1}+1}^{m_1+\dots+m_r} \lambda_a^{(\ell)} = m_r \lambda_r + a^2 L_r + o(a^2).$$

If $m_r = 1$, and writing $\lambda_r = \lambda_0^{(\ell)}$, we have

$$\lambda_a^{(\ell)} = \lambda_0^{(\ell)} + a^2 L^{(\ell)} + o(a^2)$$

(this applies in particular to $\lambda^c = \lambda_a^{(\ell)}$ for $\lambda_0^{(\ell)} = 0$).

An explicit expression for L_r can be obtained (see Proposition 9). We do not assume ergodicity of (F, volume), and therefore we use *integrated* Lyapunov exponents (averaged over the volume); see, however, Remark 15(a).

Because the perturbation +aF'(+higher order in a) to F_0 gives only a quadratic contribution in the above formulas, the higher order terms do not contribute to order a^2 . Since the higher order terms do not change our results, these terms will be omitted in what follows.

2. Normal hyperbolicity

As in [17], we invoke the theory of normal hyperbolicity of [10]. We start from the fact that F_0 is normally hyperbolic to the smooth fibration of \mathbf{T}^{m+1} by circles $\{x\} \times \mathbf{T}$. Taking some $k \geq 2$ we apply [10] Theorems (7.1), (7.2). Thus we obtain a C¹ neighborhood U of F_0 in the C^k diffeomorphisms of \mathbf{T}^{m+1} such that, for $F \in U$, there is an equivariant fibration $\pi: \mathbf{T}^{m+1} \to \mathbf{T}^m$ with

$$\pi F = \Phi \pi.$$

The fibers $\pi^{-1}{x}$ are C^k circles forming a continuous fibration of \mathbf{T}^{m+1} (this fibration is in general not smooth). Furthermore, there is a *TF*-invariant continuous splitting of $T\mathbf{T}^{m+1}$ into three subbundles:

$$T\mathbf{T}^{m+1} = E^s + E^u + E^c$$

such that E^c is 1-dimensional tangent to the circles $\pi^{-1}\{x\}$, E^s is m^s -dimensional contracting and E^u is m^u -dimensional expanding for TF.

If $\lambda_r < 0$ (and F is in a suitable C¹-small neighborhood U of F_0), we can introduce a continuous vector subbundle E^r of $T\mathbf{T}^{m+1}$ which consists of vectors contracting under TF^n faster than $(\lambda_r + \epsilon)^n$ where $\epsilon > 0$ and $\lambda_r + \epsilon < \lambda_{r+1}$. In fact E^r is a hyperbolic (attracting) fixed point for the action induced by TF^{-1} on the bundle of $m_1 + \cdots + m_r$ dimensional linear subspaces of $T\mathbf{T}^{m+1}$ (over F^{-1} acting on T^{m+1}).

If $\lambda_r > 0$, replacement of F by F^{-1} similarly yields a continuous subbundle \overline{E}^r of $m_r + \cdots$ dimensional subspaces.

3. Proposition

Assume that F is of class C^k , $k \ge 2$, and that F is C^k close to F_0 . The bundles E^r , \overline{E}^r when restricted to a circle $\pi^{-1}\{x\}$ are of class C^{k-1} , continuously in x.

If \mathcal{G} denotes the (Grassmannian) manifold of $m_1 + \cdots + m_r$ dimensional linear subspaces of \mathbf{R}^{m+1} , we may identify the bundle of $m_1 + \cdots + m_r$ dimensional linear subspaces of $T\mathbf{T}^{m+1}$ with $\mathbf{T}^{m+1} \times \mathcal{G}$. We denote by $\mathcal{E} \in \mathcal{G}$ the spectral subspace of the matrix defining Φ corresponding to the smallest $m_1 + \cdots + m_r$ eigenvalues (in absolute value, and repeated according to multiplicity).

If \mathcal{F}_0 is the action defined by TF_0 on $T\mathbf{T}^{m+1} \times \mathcal{G}$, the circles $\{x\} \times \mathbf{T} \times \{\mathcal{E}\}$ form an \mathcal{F}_0 invariant fibration of $\mathbf{T}^{m+1} \times \{\mathcal{E}\}$, to which \mathcal{F}_0 is normally hyperbolic. If F is \mathbf{C}^k close to F_0 , the corresponding \mathbf{C}^{k-1} action \mathcal{F} is normally hyberbolic to a pertubed fibration where $\{x\} \times \mathbf{T} \times \{\mathcal{E}\}$ is replaced by $E^r | \pi^{-1} \{x\}$. According to [10] Theorem 7.4, Corollary (8.3) and the following Remark 2, we find that the \mathbf{C}^{k-1} circle $E^r | \pi^{-1} \{x\} \subset \mathbf{T}^{m+1} \times \mathcal{G}$ depends continuously on $x \in \mathbf{T}^{m+1}$. Similarly for \overline{E} .

Note that in [17], the C^r section theorem is used in a similar situation, giving estimates uniform in x. However, continuity in x (not just uniformity) will be essential for us in what follows.

4. Corollary

The splitting $T\mathbf{T}^{m+1} = E^s + E^u + E^c$ when restricted to a circle $\pi^{-1}\{x\}$ is of class \mathbf{C}^{k-1} , continuously in x.

It is clear that $E^c|\pi^{-1}\{x\}$ is of class C^{k-1} because it is the tangent bundle to the C^k circle $\pi^{-1}\{x\}$. As to E^s , E^u , they are special cases of E^r , \overline{E}^r .

Notation: Remember that $F = F_0 + aF'$, and fix F'. We shall use the notation π_a, E_a^r, \ldots to indicate the *a*-dependence of π, E^r, \ldots .

5. Proposition

For small $\epsilon > 0$ there is a continuous function $x \mapsto \gamma_x$ from \mathbf{T}^m to $C^k(\mathbf{T} \times (-\epsilon, \epsilon) \to \mathbf{T}^m)$ such that $\gamma_x(y, 0) = 0$ and

$$\pi_a^{-1}\{x\} = \{(x + \gamma_x(y, a), y) \colon y \in \mathbf{T}\}.$$

To see this define $\tilde{F}: \mathbf{T}^{m+1} \times (-\epsilon, \epsilon) \to \mathbf{T}^{m+1} \times (-\epsilon, \epsilon)$ by

$$\tilde{F}(\xi, a) = ((F_0 + aF')(\xi), a)$$

and observe that \tilde{F} is normally hyperbolic to the 2-dimensional manifolds

$$\bigcup_{a \in (-\epsilon,\epsilon)} (\pi_a^{-1}\{x\}, a)$$

and these are thus C^k 2-dimensional submanifolds of $\mathbf{T}^{m+1} \times (-\epsilon, \epsilon)$.

We may in the same manner replace $\pi_a^{-1}\{x\}$ by $\bigcup_{a\in(-\epsilon,\epsilon)}(\pi_a^{-1}\{x\},a)$ in Proposition 3 and Corollary 4. Writing E_a for E_a^r , \bar{E}_a^r , E_a^s , E_a^u , E_a^c , we obtain that $(\cdot, a) \mapsto E_a(\cdot)$, when restricted from $\mathbf{T}^{m+1} \times (-\epsilon, \epsilon)$ to $\bigcup_{a\in(-\epsilon,\epsilon)}(\pi_a^{-1}\{x\},a)$, is of class C^{k-1} . We rephrase this as follows:

6. Proposition

The map

$$x \mapsto \{(y,a) \mapsto E_a(x + \gamma_x(y,a), y)\},\$$

where E_a stands for E_a^r , \bar{E}_a^r , E_a^s , E_a^s , E_a^c , is continuous $\mathbf{T}^m \to \mathbf{C}^{k-1}(\mathbf{T} \times (-\epsilon, \epsilon) \to \mathbf{G}$ rassmannian of \mathbf{R}^{m+1}) where we have used the identification $T\mathbf{T}^{m+1} = \mathbf{T}^{m+1} \times \mathbf{R}^{m+1}$.

Notation: From now on we write E_a for E_a^r , \bar{E}_a^r , E_a^s , E_a^u , E_a^c . When a = 0, E_0 is a trivial subbundle of $T\mathbf{T}^{m+1} = \mathbf{T}^{m+1} \times \mathbf{R}^{m+1}$, and we shall write $E_0 = \mathbf{T}^{m+1} \times \mathcal{E}$, denoting thus by \mathcal{E} a spectral subspace of the matrix on \mathbf{R}^{m+1} defining $(\Phi, 1)$. We denote by \mathcal{E}^{\perp} the complementary spectral subspace.

Taking k = 2 we have then:

7. Corollary

There are linear maps $G(x, y), R(x, y, a): \mathcal{E} \to \mathcal{E}^{\perp}$ such that G(x, y) depends continuously on $(x, y) \in \mathbf{T}^m \times \mathbf{T}, R(x, y, a)$ on $(x, y, a) \in \mathbf{T}^m \times \mathbf{T} \times (-\epsilon, \epsilon),$

$$E_a(x + \gamma_x(y, a), y) = \{X + aG(x, y)X + R(x, y, a)X \colon X \in \mathcal{E}\}$$

and ||R(x, y, a)|| is o(a) uniformly in x, y.

Notice now that, if $\tilde{x} = \pi_a(x, y)$, then $x = \tilde{x} + \gamma_{\tilde{x}}(y, a)$, where $\gamma_{\tilde{x}}(y, a) = O(a)$. Now

$$E_a(x,y) = E_a(\tilde{x} + \gamma_{\tilde{x}}(y,a), y) = \{X + aG(\tilde{x},y)X + R(\tilde{x},y,a)X \colon X \in \mathcal{E}\}$$

differs from

$$E_a(x + \gamma_x(y, a), y) = \{X + aG(x, y)X + R(x, y, a)X \colon X \in \mathcal{E}\}$$

by the replacement $\tilde{x} \to x$ in the right-hand side, and since $\operatorname{dist}(\tilde{x}, x) = O(a)$, we find that $\operatorname{dist}(E_a(x, y), E_a(x + \gamma_x(y, a), y)) = o(a)$. Therefore, changing the definition of R, we can again write:

8. Corollary

There are linear maps $G(x, y), R(x, y, a): \mathcal{E} \to \mathcal{E}^{\perp}$, depending continuously on their arguments, such that

$$E_a(x,y) = \{X + aG(x,y)X + R(x,y,a)X \colon X \in \mathcal{E}\}$$

and ||R(x, y, a)|| is o(a) uniformly in x, y.

We may write $T_{\xi}F = T_{\xi}(F_0 + aF') = D_0 + aD'(\xi)$, where D_0 does not depend on ξ and preserves the decomposition $T_{\xi}M = \mathcal{E} + \mathcal{E}^{\perp}$. If we apply TF to an element X + aGX + RX of E_a (as in Corollary 8) we obtain X_1 + element of $\mathcal{E}^{\perp} \in E_a$, with $X_1 \in \mathcal{E}$:

(1)
$$X_1 = D_0 X + aD'X + a^2 D'GX + aD'RX \text{ projected on } \mathcal{E}.$$

Under $(TF)^{\wedge}$, the volume element θ in $E_a(\xi)$ is multiplied by a factor $M(\xi, a)$, and the projection in \mathcal{E} of $(TF)^{\wedge}\theta$ is equal to the projection in \mathcal{E} of θ multiplied by a factor $N(\xi, a)$ such that

$$M(\xi, a) = N(\xi, a) + \ell_a(\xi) - \ell_a(F\xi)$$

for suitable ℓ_a . We may compute N from (1):

$$N(\xi, a) = N_{(0)} + aN_{(1)}(\xi) + a^2N_{(2)}(\xi) + o(a^2).$$

To proceed we take now $E_a = E_a^r$, and assume $\lambda_r < 0$. We have then, writing $d\xi$ for the volume element in T^{m+1} ,

(2)
$$L_{a} = \sum_{\ell=1}^{m_{1}+\ldots+m_{r}} \lambda_{a}^{(\ell)} = \int d\xi \log M(\xi, a) = \int d\xi \log N(\xi, a)$$
$$= L_{(0)} + aL_{(1)}(\xi) + a^{2}L_{(2)}(\xi) + o(a^{2}).$$

More precisely, we shall prove

1

9. Proposition

If $\lambda_r < 0$, we have

$$\sum_{\ell=1}^{n_1 + \dots + m_r} \lambda_a^{(\ell)} = \sum_{k=1}^r m_k \lambda_k + a^2 L + o(a^2)$$

where

$$L = \frac{1}{2} \sum_{n=-\infty}^{\infty} \int d\xi \operatorname{Tr}_{\mathcal{E}}(D_0^{-1}D'(\xi)) \operatorname{Tr}_{\mathcal{E}}(D_0^{-1}D'(F_0^n\xi)) \ge 0$$

and $\operatorname{Tr}_{\mathcal{E}}$ is defined as follows. Let \mathcal{E} be the spectral subspace of the matrix D_0 (defining $(\Phi, 1)$ in \mathbb{R}^{m+1}) corresponding to the smallest $m_1 + \cdots + m_r$ eigenvalues (in absolute value, and repeated according to multiplicity). Also let \mathcal{E}^{\perp} be the complementary spectral subspace. We define P to be the projection on \mathcal{E} parallel to \mathcal{E}^{\perp} , and write $\operatorname{Tr}_{\mathcal{E}} \cdots = \operatorname{Tr}_{\mathbf{R}^{m+1}} P \cdots P$.

The convergence of the series defining L is exponential, as will result from the proof. We postpone showing that $L \ge 0$ until Remark 15(b).

The proposition is obtained by comparing formula (2) with the formula (5) below, which we shall obtain by a second order perturbation calculation.

To first order in a we have

$$F^{n} = (F_{0} + aF')^{n} = F_{0}^{n} + a\sum_{j=1}^{n} F_{0}^{n-j} \circ F' \circ F_{0}^{j-1},$$

hence

$$T_{\xi}F^{n} = D_{0}^{n} + a \sum_{j=1}^{n} D_{0}^{n-j} D'(F^{j-1}\xi) D_{0}^{j-1}.$$

If we apply TF^n to $X + aGX + RX \in E_a$ we obtain X_n + element of $\mathcal{E}^{\perp} \in E_a$, with $X_n \in \mathcal{E}$. To zeroth order in $a, X_n = D_0^n X$, so we may write to first order $X_n = D_0^n X + aY_n(\xi)$. Therefore, to first order in a,

$$D_0^n X + aY_n(\xi) + aG(F^n\xi)D_0^n X = D_0^n X + a\sum_{j=1}^n D_0^{n-j}D'(F^{j-1}\xi)D_0^{j-1}X + aD_0^nG(\xi)X$$

and, taking the components along \mathcal{E}^{\perp} ,

$$G(F^{n}\xi)D_{0}^{n}X = \sum_{j=1}^{n} D_{0}^{n-j}D_{\perp}'(F^{j-1}\xi)D_{0}^{j-1}X + D_{0}^{n}G(\xi)X,$$

where $D'_{\perp}(.)$ is D'(.) followed by taking the component along \mathcal{E}^{\perp} , or

$$\sum_{j=1}^{n} D_0^{-j} D'_{\perp}(F^{j-1}\xi) D_0^{j-1} X + G(\xi) X = D_0^{-n} G(F^n\xi) D_0^n X$$

When $n \to \infty$, the right-hand side tends to zero (exponentially fast, remember that $X \in \mathcal{E}, GX \in \mathcal{E}^{\perp}$). Therefore (to order 0 in a)

$$G(\xi)X = -\sum_{j=1}^{\infty} D_0^{-j} D'_{\perp}(F^{j-1}\xi) D_0^{j-1}X,$$

which we shall use in the form

(3)
$$G(\xi)X = -\sum_{n=0}^{\infty} D_0^{-n-1} D'_{\perp}(F_0^n \xi) D_0^n X,$$

~~

where we have written F_0^n instead of F^n since G is evaluated to order 0 in a. (The right-hand side is an exponentially convergent series.)

Returning to (1) we see that, to second order in a,

$$\begin{aligned} X_1 &= D_0 X + a D'(\xi) X + a^2 D'(\xi) G(\xi) X & \text{projected on } \mathcal{E}, \\ &= D_0 (1 + a D_0^{-1} D'(\xi) + a^2 D_0^{-1} D'(\xi) G(\xi)) X & \text{projected on } \mathcal{E}. \end{aligned}$$

Let now $(u^{(i)})$ and $(u^{(i)\perp})$ be conjugate bases of \mathcal{E} . Also let $\delta^{(i)}$ for $i = 1, \ldots, m_1 + \cdots + m_r$ be the eigenvalues of D_0 restricted to \mathcal{E} . Then, to second order in a,

$$N(\xi, a) \wedge_1^{m_1 + \dots + m_r} u^{(\ell)}$$

is, up to a factor of absolute value 1,

$$\begin{split} \left(\prod_{\ell=1}^{m_1+\dots+m_r} \delta^{(\ell)}\right) & \left[1 + a \sum_{i=1}^{m_1+\dots+m_r} (u^{(i)\perp}, D_0^{-1}D'(\xi)u^{(i)}) \\ & + a^2 \sum_{i < j} ((u^{(i)\perp}, D_0^{-1}D'(\xi)u^{(i)})(u^{(j)\perp}, D_0^{-1}D'(\xi)u^{(j)}) \\ & - (u^{(i)\perp}, D_0^{-1}D'(\xi)u^{(j)})(u^{(j)\perp}, D_0^{-1}D'(\xi)u^{(i)})) \\ & + a^2 \sum_i (u^{(i)\perp}, D_0^{-1}D'(\xi)G(\xi)u^{(i)}) \right] \wedge_{\ell} u^{(\ell)}, \end{split}$$

so that

$$\begin{split} N(\xi,a) = & \left(\prod_{\ell=1}^{m_1 + \dots + m_r} |\delta^{(\ell)}|\right) \left[1 + \left\{a\sum_i (u^{(i)\perp}, D_0^{-1}D'(\xi)u^{(i)}) \\ &+ a^2\sum_{i < j} ((u^{(i)\perp}, D_0^{-1}D'(\xi)u^{(i)})(u^{(j)\perp}, D_0^{-1}D'(\xi)u^{(j)}) \\ &- (u^{(i)\perp}, D_0^{-1}D'(\xi)u^{(j)})(u^{(j)\perp}, D_0^{-1}D'(\xi)u^{(i)})) \\ &+ a^2\sum_i (u^{(i)\perp}, D_0^{-1}D'(\xi)G(\xi)u^{(i)})\right\}\right]. \end{split}$$

Since $\log |\delta^{(\ell)}| = \lambda_0^{(\ell)}$ we obtain, to second order in a,

$$L_{a} = \int d\xi \log N(\xi, a)$$

= $m_{1}\lambda_{1} + \dots + m_{r}\lambda_{r} + \int d\xi \left[\{\dots\} - \frac{a^{2}}{2} \left(\sum_{i} (u^{(i)\perp}, D_{0}^{-1}D'(\xi)u^{(i)}) \right)^{2} \right],$

where $\{\cdots\}$ has the same meaning as above. Write

$$\Psi_i\left(\sum_{\ell}\xi_{\ell}u^{(\ell)}\right) = \left(u^{(i)\perp}, D_0^{-1}F'\left(\sum_{\ell}\xi_{\ell}u^{(\ell)}\right)\right).$$

The first term of $\int d\xi \{\cdots\}$ is

$$a\sum_{i}\int d\xi(u^{(i)\perp}, D_0^{-1}TF'(\xi)u^{(i)}) = a\sum_{i}\int d\xi \frac{\partial}{\partial\xi_i}\Psi_i,$$

which vanishes because $\int d\xi \frac{\partial}{\partial \xi_i} \cdots = 0$. The next term in $\int d\xi \{\cdots\}$ is

$$a^{2} \sum_{i < j} \int d\xi \left(\left(\frac{\partial \Psi_{i}}{\partial \xi_{i}} \right) \left(\frac{\partial \Psi_{j}}{\partial \xi_{j}} \right) - \left(\frac{\partial \Psi_{i}}{\partial \xi_{j}} \right) \left(\frac{\partial \Psi_{j}}{\partial \xi_{i}} \right) \right)$$
$$= a^{2} \sum_{i < j} \int d\xi \left(\frac{\partial}{\partial \xi_{i}} \left(\Psi_{i} \frac{\partial \Psi_{j}}{\partial \xi_{j}} \right) - \frac{\partial}{\partial \xi_{j}} \left(\Psi_{i} \frac{\partial \Psi_{j}}{\partial \xi_{i}} \right) \right),$$

which vanishes as above. Thus we are left with

(4)
$$L_a - (m_1\lambda_1 + \dots + m_r\lambda_r) = a^2 \int d\xi \bigg[\sum_i (u^{(i)\perp}, D_0^{-1}D'(\xi)G(\xi)u^{(i)}) - \frac{1}{2} \bigg(\sum_i (u^{(i)\perp}, D_0^{-1}D'(\xi)u^{(i)}) \bigg)^2 \bigg]$$

and we may write, using (3),

$$\begin{split} &\sum_{i} (u^{(i)\perp}, D_{0}^{-1}D'(\xi)G(\xi)u^{(i)}) \\ &= -\sum_{n=0}^{\infty}\sum_{i} (u^{(i)\perp}, D_{0}^{-1}D'(\xi)D_{0}^{-n-1}D'_{\perp}(F_{0}^{n})D_{0}^{n}u^{(i)}) \\ &= -\sum_{n=0}^{\infty}\sum_{i}\sum_{j}^{*} (u^{(i)\perp}, D_{0}^{-1}D'(\xi)u^{(j)})(u^{(j)\perp}, D_{0}^{-n-1}D'(F_{0}^{n}\xi)D_{0}^{n}u^{(i)}), \end{split}$$

where we have introduced conjugate bases $(u^{(j)}), (u^{(j)\perp})$ of \mathcal{E}^{\perp} , indexed by $j = m_1 + \cdots + m_r + 1, \ldots, m + 1$, and \sum_i is over $i \leq m_1 + \cdots + m_r, \sum_j^*$ is over $j \geq m_1 + \cdots + m_r + 1$. The above expression is also

$$= -\sum_{n=0}^{\infty} \sum_{i} \sum_{j}^{*} \frac{\partial}{\partial \xi_{j}} \left(u^{(i)\perp}, D_{0}^{-1} F'\left(\sum_{\ell} \xi_{\ell} u^{(\ell)}\right) \right) \\ \times \frac{\partial}{\partial \xi_{i}} \left(u^{(j)\perp}, D_{0}^{-n-1} F'\left(F_{0}^{n} \sum_{\ell} \xi_{\ell} u^{(\ell)}\right) \right)$$

and integration by parts thus gives

$$\int d\xi \sum_{i} (u^{(i)\perp}, D_0^{-1} D'(\xi) G(\xi) u^{(i)})$$

$$= -\sum_{n=0}^{\infty} \int d\xi \sum_{i} \frac{\partial}{\partial \xi_{i}} \left(u^{(i)\perp}, D_{0}^{-1}F'\left(\sum_{\ell} \xi_{\ell} u^{(\ell)}\right) \right)$$
$$\times \sum_{j}^{\star} \frac{\partial}{\partial \xi_{j}} \left(u^{(j)\perp}, D_{0}^{-n-1}F'\left(F_{0}^{n}\sum_{\ell} \xi_{\ell} u^{(\ell)}\right) \right)$$
$$= -\sum_{n=0}^{\infty} \int d\xi \operatorname{Tr}_{\mathcal{E}}(D_{0}^{-1}D'(\xi)) \operatorname{Tr}_{\mathcal{E}^{\perp}}(D_{0}^{-n-1}D'(F_{0}^{n}\xi)D_{0}^{n})$$
$$= -\sum_{n=0}^{\infty} \int d\xi \operatorname{Tr}_{\mathcal{E}}(D_{0}^{-1}D'(\xi)) \operatorname{Tr}_{\mathcal{E}^{\perp}}(D_{0}^{-1}D'(F_{0}^{n}\xi))$$

(here $\operatorname{Tr}_{\mathcal{E}^{\perp}} = \operatorname{Tr}_{\mathbf{R}^{m+1}} - \operatorname{Tr}_{\mathcal{E}}$). The fact that $F = F_0 + aF'$ is volume preserving (to first order in *a*) is expressed by $\operatorname{Tr}_{\mathbf{R}^{m+1}}(D_0^{-1}D'(\xi)) = 0$, hence

$$\int d\xi \sum_{i} (u^{(i)\perp}, D_0^{-1} D'(\xi) G(\xi) u^{(i)})$$

= $\sum_{n=0}^{\infty} \int d\xi \operatorname{Tr}_{\mathcal{E}}(D_0^{-1} D'(\xi)) \operatorname{Tr}_{\mathcal{E}}(D_0^{-1} D'(F_0^n \xi)),$

and introducing this in (4) yields

$$L_{a} - (m_{1}\lambda_{1} + \dots + m_{r}\lambda_{r}) = a^{2} \bigg[\sum_{n=1}^{\infty} \int d\xi \operatorname{Tr}_{\mathcal{E}}(D_{0}^{-1}D'(\xi)) \operatorname{Tr}_{\mathcal{E}}(D_{0}^{-1}D'(F_{0}^{n}\xi)) + \frac{1}{2} \int d\xi (\operatorname{Tr}_{\mathcal{E}}(D_{0}^{-1}D'(\xi)))^{2} \bigg] (5) \qquad \qquad = \frac{a^{2}}{2} \sum_{n=-\infty}^{\infty} \int d\xi \operatorname{Tr}_{\mathcal{E}}(D_{0}^{-1}D'(\xi)) \operatorname{Tr}_{\mathcal{E}}(D_{0}^{-1}D'(F_{0}^{n}\xi)),$$

where the last step used the invariance of $d\xi$ under F_0^n .

10. Proof of Theorem 1

We use Proposition 9, the corresponding result with F replaced by F^{-1} , and the fact that $\sum_{\ell=1}^{m} \lambda_a^{(\ell)} = 0$ (because F is volume preserving). This gives an estimate of all the sums of $\lambda_a^{(\ell)}$ that occur in Theorem 1.

11. Corollary

In the situation of Theorem 1, the central Lyapunov exponent is

$$\begin{split} \lambda^{c} &= \frac{a^{2}}{2} \sum_{-\infty}^{\infty} \int d\xi \left[\mathrm{Tr}^{u} (D_{0}^{-1} D'(\xi)) \, \mathrm{Tr}^{u} (D_{0}^{-1} D'(F_{0}^{n} \xi)) \right. \\ &\quad - \, \mathrm{Tr}^{s} (D_{0}^{-1} D'(\xi)) \, \mathrm{Tr}^{s} (D_{0}^{-1} D'(F_{0}^{n} \xi)) \right] \\ &= \frac{a^{2}}{2} \sum_{-\infty}^{\infty} \int d\xi \left[\mathrm{Tr}^{s} (D_{0}^{-1} D'(\xi)) - \, \mathrm{Tr}^{u} (D_{0}^{-1} D'(\xi)) \right] \, \mathrm{Tr}^{c} (D_{0}^{-1} D'(F_{0}^{n} \xi)), \end{split}$$

where Tr^s , Tr^u , Tr^c denote the traces over the spectral subspaces \mathcal{E}^s , \mathcal{E}^u , \mathcal{E}^c of D_0 corresponding to eigenvalues < 1, > 1, or = 1 in absolute value (\mathcal{E}^c is one dimensional).

Since F preserves the volume, the sum of all Lyapunov exponents vanishes. Therefore λ^c is minus the sum of the negative Lyapunov exponents, given by (5), minus the sum of the positive Lyapunov exponents. Note that replacing F by F^{-1} , \mathcal{E}^s by \mathcal{E}^u (and, to the order considered, $D'(\xi)$ by $-D'(\xi)$) replaces the sum of the negative Lyapunov exponents by minus the sum of the positive exponents. This gives the first formula for λ^c .

To obtain the second formula, express $\operatorname{Tr}^{u} \operatorname{Tr}^{s} \operatorname{Tr}^{s}$ in terms of $\operatorname{Tr}^{u} \pm \operatorname{Tr}^{s}$, and remember that (because F preserves the volume) $\operatorname{Tr}^{s} + \operatorname{Tr}^{u} + \operatorname{Tr}^{c} = 0$ when applied to $D_{0}^{-1}D'(\xi)$.

The above formula (5) takes a particularly simple form in a special case described in the next theorem.

12. Theorem

Let Φ be a hyperbolic automorphism of \mathbf{T}^m , with stable and unstable dimensions m^s and $m^u = m - m^s$, and with entropy λ_0^u . Let $J: y \to y + \alpha \pmod{1}$ be a translation of \mathbf{T} , and $\phi: \mathbf{T}^m \to \mathbf{T}$ a group homomorphism $\neq 0$. Finally, let $\psi: \mathbf{T} \to \mathbf{R}^m$ be a nullhomotopic \mathbf{C}^2 function.

Define $h, g_a: \mathbf{T}^m \times \mathbf{T} \to \mathbf{T}^m \times \mathbf{T}$ by

$$h\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} \Phi x\\ Jy + \phi \Phi x - \phi x \end{pmatrix}, \quad g_a \begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x + a\psi(y) \pmod{1}\\ y \end{pmatrix}$$

and let $f_a = g_a \circ h$.

Denote by λ_a^s (resp. λ_a^u) the sum of the smallest m^s (resp. the largest m^u) Lyapunov exponents for (f_a, volume) . Also let $\lambda_a^c = -\lambda_a^s - \lambda_a^u$ be the "central exponent". Then λ_a^s , λ_a^u , λ_a^c have expansions of order 2 in a:

$$\begin{split} \lambda_a^s &= -\lambda_0^u + \frac{a^2}{2} \int_{\mathbf{T}} dy \, ((\nabla \phi) \psi'^s(y))^2 + o(a^2), \\ \lambda_a^u &= \lambda_0^u - \frac{a^2}{2} \int_{\mathbf{T}} dy \, ((\nabla \phi) \psi'^u(y))^2 + o(a^2), \\ \lambda_a^c &= \frac{a^2}{2} \int_{\mathbf{T}} dy \, [((\nabla \phi) \psi'^u(y))^2 - ((\nabla \phi) \psi'^s(y))^2] + o(a^2) \end{split}$$

Here, $\psi'^{s}(y)$ and $\psi'^{u}(y)$ are the components of the derivative $\psi'(y) \in \mathbf{R}^{m}$ in the stable and unstable subspaces \mathcal{E}^{s} and \mathcal{E}^{u} for Φ . Also, we have used $\nabla \phi: \mathbf{R}^{m} \to \mathbf{R}$ to denote the derivative of the map $\phi: \mathbf{T}^{m} \to \mathbf{T}$ with the obvious identifications.

This theorem is a simple (but nontrivial) extension of the result proved by Shub and Wilkinson [17]. In the situation that they consider $\Phi = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix}$, J =identity, $\phi = (1,0), \psi' = \psi'^{u}$. [Remark that, in the notation of [17],

$$u_0 = ((1,1).v_0)/(m-1) = ((1,0).v_0),$$

so that the formula given in Proposition II of [17] agrees with our result above.]

Notation: We shall henceforth omit the (mod 1). We shall keep ∇ to denote the derivative in \mathbf{T}^m . With obvious abuses of notation, the reader may find it convenient to think of Φ or $\nabla \Phi$ as an $m \times m$ matrix (with integer entries and determinant ± 1), and ϕ or $\nabla \phi$ as a row *m*-vector (with integer entries not all zero).

13. Reformulation of the problem

Note that $f_a^{-1} = h^{-1} \circ g_a^{-1}$, where h^{-1} , g_a^{-1} are obtained from h, g_a by the replacements Φ , J, ϕ , $\psi \to \Phi^{-1}$, J^{-1} , ϕ , $-\psi$. These replacements also interchange the stable and unstable subspaces for Φ and replace λ^s , λ^u by $-\lambda^u$, $-\lambda^s$. Therefore the formula for λ^u in the theorem follows from the formula for λ^s . And the formula for $\lambda^c = -\lambda^s - \lambda^u$ also follows. To complete the proof of the theorem we turn now to the formula for λ^s .

Define

$$\hat{\phi}inom{x}{y} = inom{x}{y+\phi x};$$

then

$$F_0\begin{pmatrix}x\\y\end{pmatrix} = \hat{\phi}^{-1}h\hat{\phi}\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}\Phi x\\Jy\end{pmatrix},$$

$$\hat{g}_a \begin{pmatrix} x \\ y \end{pmatrix} = \hat{\phi}^{-1} g_a \hat{\phi} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + a\psi(y + \phi x) \\ y - a(\nabla \phi)\psi(y + \phi x) \end{pmatrix}$$

so that

$$F\begin{pmatrix}x\\y\end{pmatrix} = \hat{\phi}^{-1}f_a\hat{\phi}\begin{pmatrix}x\\y\end{pmatrix} = \hat{g}_aF_0\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}\Phi x + a\psi(Jy + \phi\Phi x)\\Jy - a(\nabla\phi)\psi(Jy + \phi\Phi x)\end{pmatrix}.$$

Finally, $F = F_0 + aF'$ with

$$F_0\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}\Phi x\\Jy\end{pmatrix}, \quad F'\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}\psi(Jy + \phi\Phi x)\\-(\nabla\phi)\psi(Jy + \phi\Phi x)\end{pmatrix}$$

Since F is conjugate (linearly) to f_a , we may compute λ^s from F instead of f_a .

14. Proof of Theorem 12

Write $\mathbf{R}^{m+1} = \mathcal{E}^s + \mathcal{E}^u + \mathbf{R}$. We shall apply Proposition 9 with $\mathcal{E} = \mathcal{E}^s$, $\mathcal{E}^{\perp} = \mathcal{E}^u + \mathbf{R}$. Using $\xi = (x, y)$ and $X \in \mathcal{E}^s$, $Y \in \mathcal{E}^u$, $Z \in \mathbf{R}$ we may write

$$D_0 \begin{pmatrix} X+Y\\ Z \end{pmatrix} = \begin{pmatrix} (\nabla\Phi)(X+Y)\\ Z \end{pmatrix},$$
$$D'(\xi) \begin{pmatrix} X+Y\\ Z \end{pmatrix} = \begin{pmatrix} \psi'(Jy+\phi\Phi x)((\nabla\phi\Phi)(X+Y)+Z)\\ -(\nabla\phi)\psi'(Jy+\phi\Phi x)((\nabla\phi\Phi)(X+Y)+Z) \end{pmatrix},$$

where ψ' denotes the derivative of ψ . Therefore

$$\operatorname{Tr}_{\mathcal{E}}(D'(\xi)D_0^{-1}) = (\nabla\phi)\psi'^s(Jy + \phi\Phi x)$$

and (5) contains the integrals

$$\int d\xi \operatorname{Tr}_{\mathcal{E}}(D_0^{-1}D'(\xi)) \operatorname{Tr}_{\mathcal{E}}(D_0^{-1}D'(F_0^n\xi))$$
$$= \int d\xi [(\nabla \phi)\psi'^s (Jy + \phi \Phi x)] [(\nabla \phi)\psi'^s (J^{n+1}y + \phi \Phi^{n+1}x)]$$

Performing a change of variables $\bar{x} = \Phi x$, $\bar{y} = Jy + \phi \Phi x$ we find that this is

$$= \int d\bar{x} d\bar{y} [(\nabla \phi) \psi'^{s}(\bar{y})] [(\nabla \phi) \psi'^{s} (J^{n}\bar{y} + \phi \Phi^{n}\bar{x} - \phi\bar{x})].$$

We claim that this last integral vanishes unless n = 0. This is because, if $n \neq 0$,

$$\int d\bar{x}\psi'(J^n\bar{y}+\phi\Phi^n\bar{x}-\phi\bar{x})=0.$$

Indeed, $\phi \Phi^n \bar{x} - \phi \bar{x}$ is a linear combination with integer coefficients of the components $\bar{x}_1, \ldots, \bar{x}_m$ of \bar{x} , and the coefficients do not all vanish because $\phi \Phi^n = \phi$

357

is impossible (Φ is hyperbolic and $\phi \neq 0$). Integrating the derivative ψ' with respect to a variable \bar{x}_j really occurring in $\phi \Phi^{\ell} \bar{x} - \phi \bar{x}$ gives zero as announced.

Returning to (5) we have thus

$$\begin{split} \lambda_a^s + \lambda_0^u &= \frac{a^2}{2} \int d\xi (\operatorname{Tr}_{\mathcal{E}}(D_0^{-1}D'(\xi)))^2 \\ &= \frac{a^2}{2} \int d\bar{y} ((\nabla \phi)\psi'^s(\bar{y}))^2, \end{split}$$

which is the formula given for λ_a^s in Theorem 12. And according to Section 13 this completes our proof.

15. Final remarks

(a) Shub and Wilkinson [17] showed that close to a diffeomorphism (hyperbolic automorphism Φ of \mathbf{T}^2) × (identity on \mathbf{T}) there is a C¹ open set of ergodic volume preserving C^2 diffeomorphisms of T^3 with central Lyapunov exponent $\lambda^c > 0$. They remark that their result extends to the situation where Φ is a hyperbolic automorphism of \mathbf{T}^m with one-dimensional expanding eigenspace. More generally, if Φ is any hyperbolic automorphism of \mathbf{T}^m , Theorem 12 gives close to $(\Phi, \text{ rotation of } \mathbf{T})$ in $\mathbb{C}^2(\mathbf{T}^{m+1})$ a diffeomorphism F with $\lambda^c > 0$. Since λ^c is given by an integral over the volume of a local "central" stretching exponent, we have $\lambda^c > 0$ in a C¹ neighborhood of F. But by a result of Dolgopyat and Wilkinson [8] (Corollary 0.5), stable ergodicity is here C^1 open and dense in the C^2 volume preserving diffeomorphisms (C^1 is improved to C^k in [12]): we have center bunching and stable dynamical coherence because we consider perturbations of (Φ , rotation of **T**) for which the center foliation is C¹, see [10], [13]. In conclusion, close to (hyperbolic automorphism Φ of \mathbf{T}^m) × (rotation on **T**) there is a C^1 open set V of ergodic volume preserving C^2 diffeomorphisms of \mathbf{T}^{m+1} with central Lyapunov exponent $\lambda^c > 0$ (or also with $\lambda^c < 0$). In particular, if $F \in V$, the conditional measures of the volume on the circles $\pi^{-1}{x}$ are atomic, as discussed in [16].

(b) The coefficient L in Proposition 9 is ≥ 0 . Consider indeed the unitary operator U defined by $U\psi = \psi \circ F$ on $L^2(\mathbf{T}^{m+1}, \text{volume})$, and let E(.) be the corresponding spectral measure, so that

$$U = \int_{\mathbf{T}} e^{2\pi i\theta} E(d\theta).$$

If $\psi(\xi) = \operatorname{Tr}_{\mathcal{E}}(D_0^{-1}D'(\xi))$ we have a measure $\nu \geq 0$ on **T** defined by $\nu(d\theta) =$

 $(\psi, E(d\theta)\psi)$ and the Fourier coefficients

$$c_n = \int e^{2\pi n i\theta} \nu(d\theta) = \int d\xi \operatorname{Tr}_{\mathcal{E}}(D_0^{-1}D'(\xi))(D_0^{-1}D'(F_0^n\xi))$$

of this measure tend to zero exponentially. Therefore $\nu(d\theta) = \rho(\theta)d\theta$ has a smooth density ρ and

$$L = \frac{1}{2} \sum_{n = -\infty}^{\infty} c_n = \frac{1}{2} \rho(0) \ge 0.$$

(c) Suppose now that F is not necessarily a volume preserving perturbation of F_0 . We may still hope that F has an SRB measure ρ_a . If F_0 were hyperbolic, we would have an expansion

$$\rho_a = \rho_0 + a\delta + o(a)$$

(see [15]) with ρ_0 = Lebesgue measure and δ a distribution. For smooth Ψ , $\delta(\Psi)$ is given (because ρ_0 is Lebesgue measure) by the simple formula (see [15])

$$\delta(\Psi) = -\sum_{0}^{\infty} \rho_0((\Psi \circ F_0^n)) \operatorname{div}(F' \circ F_0^{-1})).$$

Similarly, replacing F by F^{-1} , hence F_0 , $D_0^{-1}D'(\xi)$ by F_0^{-1} , $-D'(F_0^{-1}\xi)D_0^{-1}$, we see that the anti-SRB state has an expansion

$$\bar{\rho}_a = \rho_0 + a\bar{\delta} + o(a)$$

with

$$\bar{\delta}(\Psi) = \sum_{n=1}^{\infty} \int d\xi \Psi(F_0^{-n}\xi) \operatorname{Tr}_{\mathbf{R}^{m+1}}(D'(F_0^{-1}\xi)D_0^{-1})$$
$$= \sum_{n=0}^{\infty} \int d\xi \Psi(F_0^{-n}\xi) \operatorname{Tr}_{\mathbf{R}^{m+1}}(D_0^{-1}D'(\xi)).$$

We can now estimate the Lyapunov exponents for (F, ρ_a) to second order in a even though we are not sure of the existence of the SRB measure ρ_a . We simply assume that we can use the formula for $\delta(\Psi)$. Going through the proof of Proposition 9 we have to replace $\int d\xi \log N(\xi, a)$ by $\rho_a(\log N(., a))$ and (to second order in a) this adds to the right-hand side of (4) a term

$$-a^{2}\sum_{n=1}^{\infty}\int d\xi \operatorname{Tr}_{\mathcal{E}}(D_{0}^{-1}D'(\xi))\operatorname{Tr}_{\mathbf{R}^{m+1}}(D_{0}^{-1}D'(\xi)).$$

Taking into account the integrations by parts we obtain now instead of (5) the formula

$$L_{a} - (m_{1}\lambda_{1} + \dots + m_{r}\lambda_{r}) = \frac{a^{2}}{2} \sum_{n=-\infty}^{\infty} \int d\xi \operatorname{Tr}_{\mathcal{E}}(D_{0}^{-1}D'(\xi)) \operatorname{Tr}_{\mathcal{E}}(D_{0}^{-1}D'(F_{0}^{n}\xi))$$

(6)
$$-a^{2} \sum_{n=-\infty}^{\infty} \int d\xi \operatorname{Tr}_{\mathcal{E}}(D_{0}^{-1}D'(\xi)) \operatorname{Tr}_{\mathbf{R}^{m+1}}(D_{0}^{-1}D'(F_{0}^{n}\xi)).$$

Let a^2L^s , a^2L^u , a^2L^c be the a^2 contributions to the sum of the noncentral negative, noncentral positive, and the central Lyapunov exponents for the SRB measure. We obtain a^2L^s from (6) when $n_r = n^s$. A similar calculation gives a^2L^u (it is convenient here to work via the anti-SRB measure, then replace F by F^{-1}). Estimating the average expansion coefficient gives $a^2(L^s + L^u + L^c) = \rho_a(\log \det(D_0 + aD'(.))$, hence $L^s + L^u + L^c$, hence L^c . The results are

$$\begin{split} L^{s} &= \frac{1}{2} \sum_{n=-\infty}^{\infty} \int d\xi \operatorname{Tr}^{s} (D_{0}^{-1}D'(\xi)) \operatorname{Tr}^{s} (D_{0}^{-1}D'(F_{0}^{n}\xi)) \\ &\quad - \sum_{n=-\infty}^{\infty} \int d\xi \operatorname{Tr}^{s} (D_{0}^{-1}D'(\xi)) \operatorname{Tr}_{\mathbf{R}^{m+1}} (D_{0}^{-1}D'(F_{0}^{n}\xi)), \\ L^{u} &= -\frac{1}{2} \sum_{n=-\infty}^{\infty} \int d\xi \operatorname{Tr}^{u} (D_{0}^{-1}D'(\xi)) \operatorname{Tr}^{u} (D_{0}^{-1}D'(F_{0}^{n}\xi)), \\ L^{c} &= -\frac{1}{2} \sum_{n=-\infty}^{\infty} \int d\xi \operatorname{Tr}^{c} (D_{0}^{-1}D'(\xi)) \operatorname{Tr}^{c} (D_{0}^{-1}D'(F_{0}^{n}\xi)) \\ &\quad - \sum_{n=-\infty}^{\infty} \int d\xi \operatorname{Tr}^{c} (D_{0}^{-1}D'(\xi)) \operatorname{Tr}^{u} (D_{0}^{-1}D'(F_{0}^{n}\xi)), \\ L^{s} + L^{u} + L^{c} &= -\frac{1}{2} \sum_{n=-\infty}^{\infty} \int d\xi \operatorname{Tr}_{\mathbf{R}^{m+1}} (D_{0}^{-1}D'(\xi)) \operatorname{Tr}_{\mathbf{R}^{m+1}} (D_{0}^{-1}D'(F_{0}^{n}\xi)), \end{split}$$

which can be rewritten variously.

In view of recent work [4], [1], [6], it seems reasonable to conjecture that if the above L^c is $\neq 0$, then there exists an SRB measure for (small) finite a.

ACKNOWLEDGEMENT: I am indebted to Mike Shub, Marcelo Viana, Amie Wilkinson and Lai-Sang Young for a number of useful conversations related to the present article. Also, I wish to thank the referee for helpful remarks.

References

- J. Alves, C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly expanding, Inventiones Mathematicae 140 (2000), 351–398.
- [2] A. Avila and J. Bochi, A formula with some applications to the theory of Lyapunov exponents, Israel Journal of Mathematics 131 (2002), 125–137.
- [3] C. Bonatti, X. Gómez-Mont and M. Viana, Généricité d'exposants de Lyapunov non-nuls des produits déterministes de matrices, Preprint.
- [4] C. Bonatti and M. Viana, SRB measures for partially hyperbolic systems whose central direction is mostly contracting, Israel Journal of Mathematics 115 (2000), 157–193.
- [5] K. Burns and A. Wilkinson, Stable ergodicity of skew products, Annales Scientifiques de l'École Normale Supérieure 32 (1999), 859–889.
- [6] W. Cowieson and L.-S. Young, SRB measures as zero-noise limits, in preparation.
- [7] D. Dolgopyat, On differentiability of SRB states, Preprint.
- [8] D. Dolgopyat and A. Wilkinson, Stable accessibility is C¹ dense, Astérisque, to appear.
- [9] L. Flaminio, Local entropy rigidity for hyperbolic manifolds, Communications in Analysis and Geometry 3 (1995), 555–596.
- [10] M. Hirsch, C. Pugh, and M. Shub, Invariant Manifolds, Lecture Notes in Mathematics 583, Springer, Berlin, 1977.
- [11] A. Katok, G. Knieper and H. Weiss, Formulas for the derivative and critical points of topological entropy for Anosov and geodesic flows, Communications in Mathematical Physics 138 (1991), 19–31.
- [12] V. Niţică and A. Török, An open dense set of stably ergodic diffeomorphisms in a neighborhood of a non-ergodic one, Preprint.
- [13] C. Pugh and M. Shub, Stable ergodicity and julienne quasi-conformality, Journal of European Mathematical Society 2 (2000), 1–52.
- [14] C. Pugh, M. Shub and A. Wilkinson, Partial differentiability of invariant splittings, Preprint.
- [15] D. Ruelle, Differentiation of SRB states, Communications in Mathematical Physics 187 (1997), 227–241.
- [16] D. Ruelle and A. Wilkinson, Absolutely singular dynamical foliations, Communications in Mathematical Physics 219 (2001), 481–487.
- [17] M. Shub and A. Wilkinson, Pathological foliations and removable exponents, Inventiones Mathematicae 139 (2000), 495–508.