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ABSTRACT

Starting from a hyperbolic toral automorphism times a rotation of the
circle, we obtain, for a small volume preserving perturbation, an exact and
rigorous second order perturbation expansion of the Lyapunov exponents.

Introduction

We consider volume preserving perturbations F of a diffeomorphism Fy = (@, J)
of T™t! = T™ x T, where ® is a hyperbolic automorphism of T™, and J is
a translation of T. Writing F = Fy + aF’, we shall show that the Lyapunov
exponents for (F, volume) can be expanded to second order in a (Theorem 1). In
particular, the central Lyapunov exponent A¢ of (F, volume), to second order in a,
is generally # 0 (Corollary 11). For a special family of perturbations one obtains
particularly simple formulae, first noted by Shub and Wilkinson [17]. We recover
their result in Theorem 12. We deviate from [17] mostly in that we don’t have
differentiability of A¢, only a second order expansion around a = 0. The ideas
used here are largely those in Shub and Wilkinson [17], and can be appreciated
in the background provided by Hirsh, Pugh and Shub [9], Burns and Wilkinson
[5], Ruelle and Wilkinson [16], Niticd and Torck [12], Pugh, Shub and Wilkinson
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[14]. Among older regularity results let us mention Katok, Knieper and Weiss
[11], Flaminio [9], Ruelle [15]. For recent work concerning Lyapunov exponents,
see Bonatti, Gémez-Mont and Viana [3], Avila and Bochi [2]. Closely related to
the subject of the present paper are the references [4] and [6].

After completing the writing of this paper, the author received a preprint by
D. Dolgopyat [7], which develops similar ideas in a more general setting, but
without the specific formulas we obtain here.

1. Theorem

Let ® be a hyperbolic automorphism of T™, and J: y — y + a (mod 1) a
translation of T. Define Fy = (®, J), and let F = Fy + aF’(+higher order in a)
be a C? perturbation of Fy, volume preserving to first order in a. (We take
F': T s R™H and Fof + aF'(€) has to be understood (mod 1) in each
component.) Let A\; < Ag < --- be the Lyapunov exponents of {Fp, volume) and
my,Ma, ... their multiplicities (the exponent = 0 occurs with multiplicity 1).
Also let /\1(11) < /\((12) < --- be the Lyapunov exponents of (F,volume) repeated
according to multiplicity. Then we have the second order expansion

mi+---+me
Z AO = m A + a2L, + o(a?).
f=mi+ +mpr_1+1

If m, = 1, and writing A\, = )\(()e)’ we have
MO = A+ a®L® + o(a?)

(this applies in particular to A° = 2O for /\g“ =0).

An explicit expression for L, can be obtained (see Proposition 9). We do
not assume ergodicity of (F,volume), and therefore we use integrated Lyapunov
exponents (averaged over the volume); see, however, Remark 15(a).

Because the perturbation +aF’(+higher order in @} to Fy gives only a
quadratic contribution in the above formulas, the higher order terms do not
contribute to order a?. Since the higher order terms do not change our results,
these terms will be omitted in what follows.

2. Normal hyperbolicity

As in [17], we invoke the theory of normal hyperbolicity of [10]. We start from
the fact that Fy is normally hyperbolic to the smooth fibration of T™*! by circles
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{x} x T. Taking some k > 2 we apply [10] Theorems (7.1), (7.2). Thus we obtain
a C! neighborhood U of Fy in the C* diffeomorphisms of T™t! such that, for
F € U, there is an equivariant fibration 7: T™*! — T™ with

k= ®r.

The fibers 7=*{x} are C* circles forming a continuous fibration of T™*+! (this
fibration is in general not smooth). Furthermore, there is a T F-invariant contin-
uous splitting of 7T™+! into three subbundles:

TTm+1 = E° _+_Eu +Ec

such that F¢ is 1-dimensional tangent to the circles 7~ '{z}, E* is m®-dimensional
contracting and E* is m"-dimensional expanding for T'F.

If A\, < 0 (and F is in a suitable C!-small neighborhood U of Fy), we can
introduce a continuous vector subbundle E” of TT™*! which consists of vectors
contracting under TF™ faster than (A, + €)™ where ¢ > 0 and A, + € < Apy;. In
fact E is a hyperbolic (attracting) fixed point for the action induced by TF~!
on the bundle of my + --- + m, dimensional linear subspaces of TT™*! (over
F~1! acting on T™+1).

If A\, > 0, replacement of F' by F~! similarly yields a continuous subbundle
E" of m, + - -- dimensional subspaces.

3. Proposition

Assume that F is of class C*, k > 2, and that F is C* close to Fy. The bundles
E", E™ when restricted to a circle 7=*{z} are of class C*~1, continuously in .

If G denotes the (Grassmannian) manifold of m; + - - - + m, dimensional linear
subspaces of R™t!, we may identify the bundle of m; + --- + m, dimensional
linear subspaces of TT™+! with T™t! x G. We denote by £ € G the spectral
subspace of the matrix defining ® corresponding to the smallest my + --- + m,
eigenvalues (in absolute value, and repeated according to multiplicity).

If 7y is the action defined by TFy on TT™*! x g, the circles {z} x T x {£} form
an Fy invariant fibration of T™*! x {£}, to which Fq is normally hyperbolic. If
F is C* close to Fp, the corresponding C*~1 action F is normally hyberbolic to
a pertubed fibration where {z} x T x {£} is replaced by E"|m~!{z}. According
to {10] Theorem 7.4, Corollary (8.3) and the following Remark 2, we find that
the Ck~1 circle ET|r~{z} C T™*! x G depends continuously on 2 € T™*1,
Similarly for E. [ |
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Note that in [17], the C" section theorem is used in a similar situation, giving
estimates uniform in . However, continuity in x (not just uniformity) will be
essential for us in what follows.

4. Corollary
The splitting TT™*! = E* + E* + E¢ when restricted to a circle m~{z} is of

class C*~1, continuously in z.

It is clear that E¢|m~1{z} is of class C*~! because it is the tangent bundle to
the CF circle 7~!{x}. As to E®, E¥, they are special cases of E”, E". [

Notation: Remember that F = Fy+aF’, and fix F’. We shall use the notation

Tay B, .. .to indicate the a-dependence of 7, E7, .. ..

5. Proposition

For small ¢ > O there is a continuous function x — 7, from T™ to
C*(T x (—¢,€) = T™) such that v,(y,0) = 0 and

4z} = {(z + %y, a),y):y € T}.

To see this define F: T™*! x (—¢,€) = T™H! x (—¢,¢€) by
F(¢,a) = (Fo +aF')(€),a)

and observe that F' is normally hyperbolic to the 2-dimensional manifolds

U @ 'eha)

ac(—e.€)
and these are thus C* 2-dimensional submanifolds of T™*! x (—¢,€). |

We may in the same manner replace 73 {2} by U,g(—c ¢ (Ta Y}, a) in Propo-
sition 3 and Corollary 4. Writing E, for E7, E7, ES, E*, ES, we obtain that

(ya) = Eq(-), when restricted from T™*! x (—¢,€) t0 U,e(_c (72 {2}, a), is
of class C*~1. We rephrase this as follows:
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6. Proposition

The map
- {(y,a) = Eo(z + 7 (y,0),9)},

where E, stands for E, E*, ES, E¥, ES, is continuous T™ — C*~1(T x (~¢,€) —
Grassmannian of R™t1) where we have used the identification TT™+!
Tm+1 X Rm+1.

Notation: From now on we write E, for EJ, ET, E%, E¥, ES. When a = 0,
Ejy is a trivial subbundle of TT™+! = T™+1 x R™*+1, and we shall write Eq =
T™H x €, denoting thus by £ a spectral subspace of the matrix on R™*! defining
(®,1). We denote by £+ the complementary spectral subspace.

Taking k£ = 2 we have then:

7. Corollary

There are linear maps G(z,y), R(z,y,a): &€ — E+ such that G(z,y) depends
continuously on (z,y) € T™ x T, R(z,y,a) on (z,y,a) € T™ x T x (—¢,€),

Eo( +7:(y,0),y) = {X + aG(z,y) X + R(z,y,a)X: X € £}
and ||R(x,y,a)|| is o(a) uniformly in z,y.

Notice now that, if # = w,(x,y), then = 4+ vz (y, a), where y;(y, a) = O(a).
Now

Eo(z,y) = Ea(& +v:(y,0),9) = {X + aG(Z,y) X + R(Z,y,0)X: X € £}
differs from
Eo(z + v2(y,0),y) = {X + aG(z,¥) X + R(z,9,0)X: X € £}

by the replacement & — z in the right-hand side, and since dist(Z,z) = O(a),
we find that dist(Eq(z,y), Ea(z + 72(y,a),y)) = o(a). Therefore, changing the
definition of R, we can again write:

8. Corollary

There are linear maps G(z,y), R(z,y,a): £ — £, depending continuously on
their arguments, such that

Eo(z,y) = {X +aG(z,y)X + R(z,y,a)X: X € £}
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and ||R(x,y,a)|| is o(a) uniformly in z,y.

We may write T F' = Tz (Fo + aF') = Do +aD’(§), where Dy does not depend
on £ and preserves the decomposition TeM = £ + £L. If we apply TF to an
element X + aGX + RX of E, (as in Corollary 8) we obtain X;+ element of
£t € E,, with X; € €:

(1) X, =DyX +aD'X +a®?D'GX +aD'RX projected on €.

Under (TF)", the volume element 6 in E,(£) is multiplied by a factor M (¢, a),
and the projection in £ of (TF)" is equal to the projection in £ of § multiplied
by a factor N(£,a) such that

M(&,a) = N(§, 0) + £e(£) — La(FE)
for suitable £,. We may compute N from (1):
N(€,a) = Ny + aNg)(€) + a* Ny (€) + o(a?).

To proceed we take now E, = E, and assume A, < 0. We have then, writing
d¢ for the volume element in T™*!,

mi+...4+my

L= >, NO= [detogMe)= [ delogN(ea)

=1
(2) = Loy + aL(1y(§) + a® Lz (€) + o(a®).

More precisely, we shall prove

9. Proposition
If A\, < 0, we have

Myt tm,

Z A0 = Z meAe + a*L 4 o(a?)

£=1 k=1

where -
L=3 Y [ deTee(D5 D) De (D5 D' (Fy9)) 2 0
n=-—0Q
and Trg is defined as follows. Let £ be the spectral subspace of the matrix Dy
(defining (®, 1) in R™*!) corresponding to the smallest my+- - - +m, eigenvalues
(in absolute value, and repeated according to multiplicity). Also let £+ be the
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complementary spectral subspace. We define P to be the projection on £ parallel
to &1, and write Trg -+ = Trgm+1 P--- P.

The convergence of the series defining L is exponential, as will result from the
proof. We postpone showing that L > 0 until Remark 15(b).

The proposition is obtained by comparing formula (2) with the formula (5)
below, which we shall obtain by a second order perturbation calculation.

To first order in a we have

k22
F'=(Fy+aF )" =F"+ay F'7oF oFi™!
0 ¢] Q
=1

hence
n

TeF" =D +a) Dy 7 D/(Fi='¢)Dj™".
j=1
If we apply TF™ to X + aGX + RX € E, we obtain X,+ element of £+ € E,,

with X,, € £. To zeroth order in a, X,, = D} X, so we may write to first order
Xn = D3 X + aY,(€). Therefore, to first order in a,

n
Dy X +aYn(§) + aG(F"§) DX =DgX +a)_ Dy 'D'(FI-'¢)D™'X
j=1

+aDiG(E)X
and, taking the components along £+,
n
GF")DyX =3 Dy Dy (FH) D™ X + DEG(E)X,
Jj=1
where IV (.) is D'(.) followed by taking the component along £+, or
Y Dy DL(FTDYTIX + G(¢)X = Dg"G(F"E) DR X.
i=1

When n — oo, the right-hand side tends to zero (exponentially fast, remember
that X € £, GX € £1). Therefore (to order 0 in a)

GE)X == D;/D\ (FI~'¢)D} ' X,
i=1

which we shall use in the form

) G(OX ==Y Dy ‘D (Fp&)DyX,

n=0
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where we have written F{ instead of F™ since G is evaluated to order 0 in a.
(The right-hand side is an exponentially convergent series.)
Returning to (1) we see that, to second order in a,
X1 = DoX +aD'(§)X + a®>D'(£)G(£)X  projected on &,
= Do(1+aD;'D'(¢) + a®’Dy ' D' (€)G(€))X  projected on €.
Let now (u(¥) and (u()1) be conjugate bases of £. Also let §¢) fori =1,...,m+
-«++ m, be the eigenvalues of Dy restricted to £. Then, to second order in a,

N(Ea) ApH+ ¥ 0

is, up to a factor of absolute value 1,

mi+--+my mi+-+my ] )
( 11 5“')) [1+a > (D, DgtD (€)u)

=1 i=1

+ a2 Z((u(i)l’ DO_ID’(f)u(’))(u(J)“L, DEID'(f)u(]))
1<
— (u(i)l, Do_lDl(f)u(]))(u(])J_, Do—lDl(é-)u(l)))

+a (%, D DGO Acul
i
so that

mi+tm,
N(¢.a) =(

II |5<¢>|) [1 + {aZ(u(i)L,Dng'(ﬁ)u(i))

=1 7
+ a2 Z((u(i)l, DO_ID'(f)u(i))(u(j)l, Do_lDl(é)u(j))
i<
—- (U(Z)_L’DO—IDI(E)u(]))(U(])J_’DO—ID/(g)u(z)))
+ Cl2 Z(u(i)l, DalDl(f)G(f)U(z)) }] .

Since log |6\ | = /\((f) we obtain, to second order in a,

La=/d£10gN(§,a)
a? . 2\ 2
=miAL+ -+ M + /df [{ . } — 5 < Z(u(z)J_’ DO_IDI(é)u(Z))) ],

where {---} has the same meaning as above. Write

\I!i(Z&u(e)> = (u(i)'L,DglF'(Z&gu“)))
4 4
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The first term of [ dé{---} is
aZ/dg(uW,DngF’(g)uW) :QZ/&@%@“
which vanishes because [ d¢ 8_{2? .-+ =0. The next term in [dé{--}is
¥\ 0V,
22/‘15 agl ag] ) B (ag)(agf))
0 oY,
- “ZZ/‘Z£ (G (732 ~ag (»5¢)

which vanishes as above. Thus we are left with

(4) La — (ml)\l ++m7~)\r)

_ 2 / dg[Z(UW,D(;ID'(aG(e)u(“) - %(Zw‘“*”)o" ID'@“@)Y]

i i

and we may write, using (3),

> @D DD (6)G(€)u?)

i

—ZZ u®L DFD/(¢) Dy "1 Dy (Fy) D)

n=0 14

= _ZZZ OL DD (6)uD)(w, DF D (FPe) Diu®),

n=0 1

where we have introduced conjugate bases (u)), (u)1) of £+, indexed by j =
mi+--+m.+1,...,m+1, and >, is over i < my + -+ m,, Z; is over
j>mq+---+m, + 1. The above expression is also

:_ZZZ ( (iu’DOqF/(Z&u(e)))
n=0 i [4
x a%- (u(j)‘L, D" 'F (Fg > @u(")))
¢ e

and integration by parts thus gives

[ de ¥ @, D D €)6E)u)
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)
n=0 i ot ¢
- 9 j -n— n
X zj:é—é(u(m,po 3 (FO Z;ggu“)))
-3 / d¢ Tre (D' D/ (€)) Trgs (D™ D (E3€)DY)
n=0

== [ de e (D5 D/ () Toea (DD (F)
n=0

(here Trgr = Trgm+: — Trg). The fact that F = Fy + aF” is volume preserving
(to first order in a) is expressed by Trpm+1(Dg ' D’(€)) = 0, hence

[ €@t 0" D' ()G
. i [ a6 mee (054D (©) e (D7 D)),
and introducing this in (4} yields
Lo = (mide + -4 o) =a? [i [ 12605 D) Tee (05 DY 5)

+3 [ (e D (€)?

02 ad _ -
) =% Y [ deTee(Dy D'(€) Tee (D D/ (F)),
where the last step used the invariance of d§ under F§. |

10. Proof of Theorem 1

We use Proposition 9, the corresponding result with F replaced by F~1, and the
fact that >, , AP =0 (because F' is volume preserving). This gives an estimate
of all the sums of )\.(f) that occur in Theorem 1. [ |
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11. Corollary

In the situation of Theorem 1, the central Lyapunov exponent is

= %Z/dg [T (Dg ' D'(6)) T (D3 D' (F€))
~ Tr* (D5 D' (€)) Te* (DG 1D (FP€)))

2 o0
= 53 [ e (05 D) - T (05 D) T (D5 D (7)),

where Tr®, Tr*, Tr® denote the traces over the spectral subspaces £°, £*, £¢ of
Dy corresponding to eigenvalues < 1, > 1, or = 1 in absolute value (£¢ is one
dimensional).

Since F preserves the volume, the sum of all Lyapunov exponents vanishes.
Therefore A€ is minus the sum of the negative Lyapunov exponents, given by (5),
minus the sum of the positive Lyapunov exponents. Note that replacing F by
F=1,&° by £* (and, to the order considered, D'(£) by —D'(£)) replaces the sum
of the negative Lyapunov exponents by minus the sum of the positive exponents.
This gives the first formula for A°.

To obtain the second formula, express Tr* Tr* — Tr® Tr® in terms of Tr"” 4 Tr®,
and remember that (because F' preserves the volume) Tr® + Tr" + Tr® = 0 when
applied to Dy 'D’(¢). ]

The above formula (5) takes a particularly simple form in a special case de-
scribed in the next theorem.

12. Theorem

Let ® be a hyperbolic automorphism of T™, with stable and unstable dimensions
m® and m* = m — m?®, and with entropy \y. Let J: y — y + « (mod 1) be a
translation of T, and ¢: T™ — T a group homomorphism # 0. Finally, let
¥: T — R™ be a nullhomotopic C? function.

Define h,g,: T™ x T — T™ x T by

()= (i) 0 (5)= (7 o)

and let f, = g, 0 h.
Denote by A} (resp. AY) the sum of the smallest m*® (resp. the largest m*)
Lyapunov exponents for (f,,volume). Also let A$ = —)% — A% be the “central
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exponent”. Then A, A, A% have expansions of order 2 in a:
8 u a? /s 2 2
A=-dot Td:t;((V@)w (¥))* + ola®),
u u a2 73 2 2
X=X~ 5 Tdy((W)w () + o(a®),

c a2 g 2 /s 2 2
3= [ IV @) - (V0w + ofa?)

Here, '3 (y) and ¥ (y) are the components of the derivative ¢'(y) € R™ in the
stable and unstable subspaces £ and £ for ®. Also, we have used V¢: R™ — R,
to denote the derivative of the map ¢: T™ — T with the obvious identifications.

This theorem is a simple (but nontrivial) extension of the result proved by Shub
and Wilkinson [17]. In the situation that they consider & = (f }), J =identity,
¢ = (1,0), ¥ = ¢"™. [Remark that, in the notation of [17],

uo = ((1,1)-v0)/(m — 1) = ((1,0).v0),
so that the formula given in Proposition II of [17] agrees with our result above.]

Notation: We shall henceforth omit the (mod 1). We shall keep V to denote
the derivative in T™. With obvious abuses of notation, the reader may find it
convenient to think of ® or V& as an m x m matrix (with integer entries and
determinant £1), and ¢ or V& as a row m-vector (with integer entries not all
Z€ro).

13. Reformulation of the problem

Note that f7! = h™! o g1, where Al g-! are obtained from h, g, by the
replacements ®, J, ¢,9 — &~ 1, J~1, ¢, —1). These replacements also interchange
the stable and unstable subspaces for ® and replace A%, A* by —A%, —A%. There-
fore the formula for A% in the theorem follows from the formula for A*. And the

formula for A = —A% — X* also follows. To complete the proof of the theorem
we turn now to the formula for A%,
Define
~fx T
-2
y y+ox
then

o) =)= ()
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()=o)~ (7S
so that

x s 1, ofx . x &z + ay(Jy + 0@z
F<y> =97 et (y> - g“F°<y) B (Jy - a(ngg(lin ¢<I)>x)>'
Finally, F = Fy + aF’ with
F (a:) _ <<I>a:>’ P (:l:) _ ( Y(Jy + ¢Px) )
y Jy y —(Vé)y(Jy + ¢2z)
Since F' is conjugate (linearly) to f,, we may compute A* from F instead of f,.

14. Proof of Theorem 12

Write R™*! = £9 4+ £* 4 R. We shall apply Proposition 9 with £ = &%, £+ =
E*+R. Using £ = (z,y) and X € £5,Y € &%, Z € R we may write

Dy <X;Y) _ ((VCD)(?' -|-Y)>’

, X+Y _ ¢'(Jy+¢‘1>1‘)((V¢<I>)(X+Y)+Z)
Do ( 7 ) = (—(ww'uy 1 682)((Vo®)(X +Y) + Z))’

where 9" denotes the derivative of 1. Therefore

Tre(D'(€)Dg ") = (V)¢ (Jy + ¢®a)
and (5) contains the integrals

[ de 105 D) Tre(D5 D' (7))

— [ eV Ty + 68NV (I + 687 )
Performing a change of variables & = &z, § = Jy + ¢®x we find that this is
= [ dadgl(Vays @I (g + 62"z ~ 67)]
We claim that this last integral vanishes unless n = 0. This is because, if n # 0,
/dw’(ﬂg + ¢®"7 — ¢7) = 0.

Indeed, ¢®"Z — ¢z is a linear combination with integer coefficients of the com-
ponents Ip,...,%;, of Z, and the coefficients do not all vanish because ¢®" = ¢
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is impossible (® is hyperbolic and ¢ # 0). Integrating the derivative ¢’ with
respect to a variable Z; really occurring in ¢®'E — T gives zero as announced.
Returning to (5) we have thus
a2

X+ = 5 [ de(Tee(05 D)2

:%/@mww@ﬂ

which is the formula given for A} in Theorem 12. And according to Section 13
this completes our proof. |

15. Final remarks

(a) Shub and Wilkinson [17] showed that close to a diffeomorphism (hyperbolic
automorphism @ of T?) x (identity on T) there is a C' open set of ergodic
volume preserving C? diffeomorphisms of T® with central Lyapunov exponent
A¢ > 0. They remark that their result extends to the situation where & is
a hyperbolic automorphism of T™ with one-dimensional expanding eigenspace.
More generally, if ® is any hyperbolic automorphism of T™, Theorem 12 gives
close to (®, rotation of T) in C?(T™+!) a diffeomorphism F with A° > 0. Since \°
is given by an integral over the volume of a local “central” stretching exponent,
we have A° > 0 in a C! neighborhood of F. But by a result of Dolgopyat
and Wilkinson [8] (Corollary 0.5), stable ergodicity is here C! open and dense
in the C? volume preserving diffeomorphisms (C! is improved to C* in [12)):
we have center bunching and stable dynamical coherence because we consider
perturbations of (®, rotation of T) for which the center foliation is C!, see [10],
[13]. In conclusion, close to (hyperbolic automorphism & of T™) x (rotation on
T) there is a C! open set V of ergodic volume preserving C? diffeomorphisms
of T™+1 with central Lyapunov exponent A° > 0 (or also with A° < 0). In
particular, if F € V| the conditional measures of the volume on the circles #~!{x}
are atomic, as discussed in [16].

(b) The coefficient L in Proposition 9 is > 0. Consider indeed the unitary
operator U defined by U+ = 9 o F on L?(T™*! volume), and let E(.) be the
corresponding spectral measure, so that

Uz/émmwy
T

If (&) = Tre(Dy'D’'(€)) we have a measure v > 0 on T defined by v(df) =
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(1, E(d8)%) and the Fourier coefficients

e = / €20y (df) = / d€ Trs (D3 D' (€)) (Dy D' (F€)

of this measure tend to zero exponentially. Therefore v(df) = p(6)df has a
smooth density p and

o0

1 1
L == n = = > 0.
3 E c 2p(O)_O

n=—oo

(c) Suppose now that F' is not necessarily a volume preserving perturbation of
Fy. We may still hope that F has an SRB measure p,. If Fy were hyperbolic, we
would have an expansion

Pa = po + ad + o(a)

(see [15]) with po = Lebesgue measure and § a distribution. For smooth ¥, §(¥)
is given (because pg is Lebesgue measure) by the simple formula (see [15])

oo}

5(8) = =" pol((¥ 0 F).div(F o Fy 1)),
0

Similarly, replacing F by F~!, hence Fp, Dy*D'(¢) by Fy!, —D'(F5'€) Dy, we
see that the anti-SRB state has an expansion

Pa = po+ad + ofa)

with
5wy =% / dEV(F5 ™€) Trgmes (D (Fy'€) D5 Y)
n=1

= Z / dE¥(F3 ™€) Trpm+1 (DG D' (€)).
n=0

We can now estimate the Lyapunov exponents for (F, p,) to second order in
a even though we are not sure of the existence of the SRB measure p,. We
simply assume that we can use the formula for §(¥). Going through the proof
of Proposition 9 we have to replace [ d¢log N(¢,a) by p.(log N(.,a)) and (to
second order in @) this adds to the right-hand side of (4) a term

~a* Y [ deTre(D D' (€) Trmnss (05 D).
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Taking into account the integrations by parts we obtain now instead of (5) the
formula

Lo (madi+- -4 mA,) = Z [ de T (D5 D (€) Tre (05 D' (R 9))
(6) a2 Z / dE Tre (D5 1D (€)) Trame: (Dy 1D/ (FE)).

Let a?L®, a®?L*, a®L° be the a? contributions to the sum of the noncentral
negative, noncentral positive, and the central Lyapunov exponents for the SRB
measure. We obtain a2L® from (6) when n, = n®. A similar calculation gives
a’L* (it is convenient here to work via the anti-SRB measure, then replace F
by F~1). Estimating the average expansion coefficient gives a?(L® + L% + L¢) =
pa(logdet{Dg + aD’(.)), hence L® + L* + L°, hence L. The results are

Z [ deme (05 D€ 1 (05 D' (B )

_ n}:_:oo / de Tr* (D3 ' D' (€)) Trpomsr (D7 1D/ (FPE)),
L __nz_: /dgw 5D/ (€)) i (Dy ' D' (F€)),
% —-n; [ deme(05 (€)1 (05 D' (5 6)
. Z_ [ sz ey 05 D (),
Léplvyre—_ L _E / d€ Trgmer (D5 D'(€)) Trgmss (D51 D' (FRE)),

which can be rewritten variously.
In view of recent work [4], [1], [6], it seems reasonable to conjecture that if the
above L€ is # 0, then there exists an SRB measure for (small) finite a.
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