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ABSTRACT 

Start ing from a hyperbolic toral au tomorphism times a rotat ion of the 

circle, we obtain, for a small volume preserving per turbat ion,  an exact and 

rigorous second order per turbat ion expansion of the Lyapunov exponents. 

Introduct ion  
We consider volume preserving perturbations F of a diffeomorphism F0 = ((I), J) 
of T m+l = T "~ × T, where (I) is a hyperbolic automorphism of T m, and J is 

a translation of T. Writing F = Fo + a F  ~, we shall show that the Lyapunov 

exponents for (F, volume) can be expanded to second order in a (Theorem 1). In 
particular, the central Lyapunov exponent Ac of (F, volume), to second order in a, 

is generally # 0 (Corollary 11). For a special family of perturbations one obtains 

particularly simple formulae, first noted by Shub and Wilkinson [17]. We recover 

their result in Theorem 12. We deviate from [17] mostly in that  we don't have 

differentiability of Ac, only a second order expansion around a = 0. The ideas 

used here are largely those in Shub and Wilkinson [17], and can be appreciated 

in the background provided by Hirsh, Pugh and Shub [9], Burns and Wilkinson 

[5], Ruelle and Wilkinson [16], Ni~ic~ and TSr5k [12], Pugh, Shub and Wilkinson 
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[14]. Among older regularity results let us mention Katok, Knieper and Weiss 

[11], Flaminio [9], Ruelle [15]. For recent work concerning Lyapunov exponents, 

see Bonatti, G6mez-Mont and Viana [3], Avila and Bochi [2]. Closely related to 

the subject of the present paper are the references [4] and [6]. 

After completing the writing of this paper, the author received a preprint by 

D. Dolgopyat [7], which develops similar ideas in a more general setting, but 

without the specific formulas we obtain here. 

1. T h e o r e m  

Let • be a hyperbolic automorphism of T m, and J: y ~-+ y + a (mod 1) a 

translation o f T .  Define Fo = (~, J), and let F = Fo + aF'(+higher order in a) 

be a C 2 perturbation of Fo, volume preserving to first order in a. (We take 

F' :  T m+l ~ R m+l and Fo~ + aF'(~) has to be understood (rood 1) in each 

component.) Let A1 < A2 < . "  be the Lyapunov exponents of (Fo, volume) and 

ml ,  m2 , . . ,  their multiplicities (the exponent = 0 occurs with multiplicity 1). 

Also let A 0) _< A (2) _< ..- be the Lyapunov exponents of (F, volume) repeated 

according to multiplicity. Then we have the second order expansion 

m l + - - . + m r  

E A (e) = m~Ar + a2L~ + o(a2). 

~ = m l + . . , + m r _ l  +1 

I [ m r  = 1, and writing Ar = A(o ~), we have 

A(e) = A(o e) + a2L (e) + o(a 2) 

(this applies in particular to A c = A (t) for A~ e) = 0). 

An explicit expression for Lr can be obtained (see Proposition 9). We do 

not assume ergodicity of (F, volume), and therefore we use integrated Lyapunov 

exponents (averaged over the volume); see, however, Remark 15(a). 

Because the perturbation +aFP(+higher order in a) to Fo gives only a 

quadratic contribution in the above formulas, the higher order terms do not 

contribute to order a 2. Since the higher order terms do not change our results, 

these terms will be omitted in what follows. 

2. Normal  hyperbolicity 

As in [17], we invoke the theory of normal hyperbolicity of [10]. We start from 

the fact that F0 is normally hyperbolic to the smooth fibration of T m+l  by circles 
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{x} x T. Taking some k > 2 we apply [10] Theorems (7.1), (7.2). Thus we obtain 

a C 1 neighborhood U of F0 in the C k diffeomorphisms of T m+l such that,  for 

F c U, there is an equivariant fibration 7r: T m+l --+ T m with 

7~F = ~ r .  

The fibers 7r-l{x} are C k circles forming a continuous fibration of T m+l (this 

fibration is in general not smooth).  Furthermore, there is a TF-invariant  contin- 

uous splitting of T T  m+l into three subbundles: 

TT ~+I = E ~ + E ~ + E ~ 

such that  E c is 1-dimensional tangent to the circles zr-a {x}, E ~ is re<dimensional 

contracting and E ~ is re<dimensional  expanding for TF.  

If Ar < 0 (and F is in a suitable Cl-small  neighborhood U of F0), we can 

introduce a continuous vector subbundle E r of T T  m+l which consists of vectors 

contracting under T F  "~ faster than (At + e) n where e > 0 and Ar + e < A~+I. In 

fact E ~ is a hyperbolic (attracting) fixed point for the action induced by T F - 1  

on the bundle of rnl + .--  + m~ dimensional linear subspaces of T T  m+l (over 
F -1 acting on Tin+l). 

If A~ > 0, replacement of F by F -1 similarly yields a continuous subbundle 

/)r  of m~ + • • - dimensional subspaces. 

3. Proposition 

Assume that F is of  class C k, k > 2, and that F is C k close to Fo. The bundles 

E~, ~ r  when restricted to a circle 7r-l{x} are of class C k - l ,  continuously in x. 

If g denotes the (Grassmannian) manifold of ml  + ' . .  + mr dimensional linear 

subspaces of R re+l, we may identify the bundle of ml  + "-" + m~ dimensional 

linear subspaces of T T  "~+1 with T ~+1 x ~. We denote by £ E ~ the spectral 

subspace of the matr ix  defining • corresponding to the smallest ml  + .- .  + m~ 

eigenvalues (in absolute value, and repeated according to multiplicity). 

If  St0 is the action defined by TFo on T T  m+~ x g ,  the circles {x} x T x  {[} form 

an -~0 invariant fibration of T m+~ × {[}, to which ~-0 is normally hyperbolic. If 

F is C k close to F0, the corresponding C k-1 action .~ is normally hyberbolic to 

a pertubed fibration where {x} x T x {g} is replaced by E~'[zr-l{x}. According 

to [10] Theorem 7.4, Corollary (8.3) and the following Remark 2, we find that  

the C k-1 circle E~[~r-l{x} C T ~+1 x g depends continuously on x E T m+l. 

Similarly fo r / ) .  | 
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Note that in [17], the C ~ section theorem is used in a similar situation, giving 

estimates uniform in x. However, continuity in x (not just uniformity) will be 

essential for us in what follows. 

4. C o r o l l a r y  

The  spli t t ing T T  m+l = E ~ + E u + E c when restricted to a circle 7r-l{x} is o f  

class C k- l ,  continuously in x.  

It is clear that EClTr-l{x} is of class C k-1 because it is the tangent bundle to 

the C k circle 7r-l{x}. As to E s, E ~, they are special cases of E r, E~. II 

Notation: Remember that F = Fo + aF ' ,  and fix F ' .  We shall use the notation 

lr~, Ea, . . .  to indicate the a-dependence of 7r, E r, . . . .  

5. Proposition 

For small  ~ > 0 there is a continuous function x 

C k ( T  x ( -e ,e )  -+ T m) such that  ?x(y, 0) = 0 and 

~-~ 7x from T m to 

7r~-'{x} = {(x  + 7~(y ,a ) , y ) :  y • T}. 

To see this define _F: T m+l × ( -c ,  e) --~ T m+l x ( -e ,  E) by 

F(~,  a) = ( ( Fo + aF' ) (~) ,  a) 

and observe that  F is normally hyperbolic to the 2-dimensional manifolds 

U (Tr~"{x}, a) 
a~(-e,e) 

and these are thus C k 2-dimensional submanifolds of T m+l x ( -e ,  ~). II 

We may in the same manner replace ~r/l{x} by Uae(_e,~)(lr~l{x}, a) in Propo- 

sition 3 and Corollary 4. Writing Ea for E~ r, /~r, E~, E~ u, E c, we obtain that  

(. ,a) ~-~ Ea( ') ,  when restricted from W m+l x ( -e ,c )  to U~e(_~,~)(~r;l{x},a), is 

of class C k-1. We rephrase this as follows: 
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6. P r o p o s i t i o n  

The map  
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x ~+ {(y, a) ~ E~(x+Tx(y,a) ,y)},  

where Ea stands for E~, E~, E~, E~, E~, is continuous T m --+ C k - l ( T x  (-e, e) --+ 
Grassmannian of  R re+l) where we have used the identitication T T  m+l = 
W m+l × R m+l. 

Notation: From now on we write Ea for E r, E~, E s, E~, E c. When a = 0, 

E0 is a trivial subbundle of T T  m+l = W m+l × R re+l, and we shall write E0 = 

T m+l x E, denoting thus by $ a spectral subspace of the matr ix  on R m+l defining 

(~, 1). We denote by E ± the complementary  spectral  subspace. 

Taking k = 2 we have then: 

7. Corollary 

There are linear maps G(x, y), R(x, y, a): £ -+ £± such that G(x, y) depends 
continuously on (x, y) E W TM x T,  R(x, y, a) on (x, y, a) • W "~ x W x (-~, e), 

Ea(X + 7x(y,a),Y) = {X + aG(x,y)X + R(x,y ,a)X:  X • £} 

and Iln(x,y,a)[I is o(a) uniformly in x,y. 

Notice now that ,  if 5: = Try(x, y), then x = ~ + 7~(Y, a), where 7~(Y, a) = O(a). 
Now 

J~a(X, y) = Ea('X q- ~ ( y ,  a), y) ~- {X q- aG(~, y)X + R(Yc, y, a)X: X E C} 

differs from 

Ea(x + ~x(y, a), y) = {X + aC(x, y)X + n(x, y, a)X: X e E} 

by the replacement 5: -+ x in the r ight-hand side, and since dist(~:, x) = O(a), 
we find tha t  dis t (Ea(x,  y), Ea(x + 7x(Y, a), y)) = o(a). Therefore, changing the 

definition of R, we can again write: 

8. Corollary 

There are linear maps G(x, y), R(x, y, a): £ -+ £±, depending continuously on 
their arguments,  such that 

Eo(x, y) = {X + aG(x, y)X + n(x,  y, a ) X :  X e E} 
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and IIR(x,y,a)ll is o(a) uniformly in x ,y .  

We may write T~F = T~(Fo + aF') = Do + aD'(~), where Do does not depend 

on ~ and preserves the decomposition T~M = E + E_L. If we apply T F  to an 

element X + aGX + R X  of Ea (as in Corollary 8) we obtain XI+  element of 

$ j- E Ea, with X1 E E: 

(1) X1 = DoX + aD' X + a2 D' G X + aD' R X  projected on $. 

Under (TF) A, the volume element O in Ea(~) is multiplied by a factor M(~, a), 

and the projection in E of (TF)^O is equal to the projection in E of 0 multiplied 

by a factor N(~, a) such that 

M(~, a) = N(~, a) + t,~(~) - g,~(F~) 

for suitable ga. We may compute N from (1): 

N(~, a) = N(o) + aN(1)(~) + a2N(2)(~) + o(a2). 

To proceed we take now E~ = E~ r , and assume $r < 0. We have then, writing 
d~ for the volume element in T re+l, 

(2) 

m l + . . . + r a .  

~=1 

= L(o) + aL(1)(~) + a2L(2)(~) + o(a2). 

More precisely, we shall prove 

9. Proposition 

If  At < O, we have 

where 

m l + . . . + m r  

;:) = + + o(a 
~=1 k : l  

D o l D  , D o l D  , L = 7  d T c( - - 

and Tr¢ is defined as follows. Let £ be the spectral subspace of the matrix Do 

(defining (~, 1) in R m+ 1) corresponding to the smallest m 1 + " "  + mr eigenvalues 

(in absolute value, and repeated according to multiplicity). Also let E ± be the 
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complementary spectral subspace. We define P to be the projection on £ parallel 
to E ±, and write TrE . . . .  TrRm+~ P.  ". P. 

The convergence of the series defining L is exponential, as will result from the 

proof. We postpone showing that L _> 0 until Remark 15(b). 

The proposition is obtained by comparing formula (2) with the formula (5) 

below, which we shall obtain by a second order perturbation calculation. 

To first order in a we have 

F n : (Fo + af t )  n -~ F~ + a~-~F~ - j  o F  I o F  j - l ,  

j = l  

hence 
n 

Tg F u = D~ + a E D~-J D'(FJ-I~)DJo-I" 
j : l  

If we apply T F  n to X + aGX + R X  E Ea we obtain Xn+ element of C ± E Ea, 

with Xn E $. To zeroth order in a, Xn = D~X, so we may write to first order 

Xn : D~X + aYn(~). Therefore, to first order in a, 

D~X + aY~(~) + aG(Fn~)D~X =D~X + a E D~-J D'(FJ-I~)DJo-I X 
j--~l 

+ aD~G(~)X 

and, taking the components along E ±, 

n 

G(F"~)D~X = E D~-J D~ (FJ-I~)DJo-IX + D~G(~)X, 
j.=l 

where D~(.) is D'(.) followed by taking the component along E ±, or 

~-~ DoJ D~ (FJ-I~)D~-I X + G(~)X = D o n G ( F ~ ) D ~ X .  
j = l  

When n -4 c~, the right-hand side tends to zero (exponentially fast, remember 

that X E E, G X  E E±). Therefore (to order 0 in a) 

(x)  

G(~)X -= - E DoJ D~ ( FJ-I~)DJo-I X'  
j = l  

which we shall use in the form 
0 0  

(3) L.o --±(FO ~)DoX, 
n~-O 
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where we have written F~ instead of F n since G is evaluated to order 0 in a. 

(The right-hand side is an exponentially convergent series.) 

Returning to (1) we see that,  to second order in a, 

X1 = DoX + aD'(~)X + a2D'(~)G(~)X projected on $, 

= Do(1 + aDolD'(~) + a2DolD'(~)G(~))X projected on $. 

Let now (u (i)) and (u(0±) be conjugate bases of E. Also let 5 (i) for i = 1 , . . . ,  m l +  

• " + mr be the eigenvalues of Do restricted to $. Then, to second order in a, 

N(~,a) A~ l+''+m~ u (e) 

is, up to a factor of absolute value 1, 

m l  + " ' + m r  \ [ m l  + ' " + m r  

H 5 (0) 1 + a E (u(i)±'DoiD'(~)u(i)) 
g = l  ~ i=1  

+ a 2 E ((u(i) ± , DolD'(~)u(i))(u (i)± , DolD'(~)u (j)) 
i<j 

so that  

- (u(i) ±, DolD'(~)u(J))(u(J) ±, DolD'(~)u(i))) 

+ a 2 ~i(u(i)±,DolD'(~)G(~)u(i))] Ae u (e), 

N(5'a)=(~'+Yi+~'16(e)l) [l + {a~i 

+ a 2 E ( ( u  (i)± , nolDt(~)u(i))(u (j)± , n o l n ' ( ~ ) u  (j)) 
i<j 

_ (u ( i )  -1-, DolD'(~)u(J))(u(J) ±, DolD'(4)u(i))) 

+ a2 ~i (u(i)±,DolD'(~)G(~)u(i)) } ] . 

Since log 15(e)] = A~ e) we obtain, to second order in a, 

La = / d( log N(( ,  a) 

=mlA1 + - "  + m r A r  -t- d~ {'"} - V E(u(i)±'D°ID'(~)u(i)) ' 
i - -  - 

where {.-.} has the same meaning as above. Write 

k°i( ~e ~eu(~)) = (u(i)±,DolF'( ~e ~u(e)) ). 
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The first te rm of f d~{. . .}  is 

a~i f d~(u(i)±'D°lTF'(~)u(O)=aE 

which vanishes because f d~8-~ ~ . . . .  O. The next term in f d~{. . .}  is 

(o~,~(o~j~ ( o ~ ( o ~  

i < j  

which vanishes as above. Thus  we are left with 

(4) na - (ml)~l -t- • • • + m.A. )  

= a 2/d~[~(u(i)±,DolD'(~)a(5)u(~))-~( ~ (u(i)±' Dol D' (~ )u(i)) ) 21 

and we may  write, using (3), 

E (u (i)±, Dol D' (~)G(~)u (i)) 
i 

= - ~ E (u  (i)± , Do 1 D'(~)Do n-i n~ (F~)D~ u (i)) 
n=O i 

= - E E (u(i)±' DolD'(()u(J))(u(J)±' Don-lD'(F~)D'du(i))' 
n = 0  i j 

where we have introduced conjugate bases (u(J)), (u (j)±) of g± ,  indexed by j = 

ml  + . . .  + mr  + 1 , . . . , m  + 1, and ~ i  is over i _< ml  + " "  + mr ,  Y~j is over 

j _> ml  + "'" + mr  + 1. The above expression is also 

0(  ( ) )  
: - ~; Z E ~ "(~)', ~o'. '  E ~,'(') 

n=O i j e " "  o( ( )) x -~--~ u(J)±,Do'-lF' Fg E ~eu(e) 

and integration by parts  thus gives 

/ d~ E (u (i)1, Dol D' ( ~ )G( ~)u (i)) 
i 
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• o(  ( )) 
× E - ~ j  u(J)±'Don-IF' r~E~u(g)  

j e 
o o  

E I d~Tr (Do1 '(~))Tr (Do n-1 '(F~)D~) = -  c D E" D 

o o  

n~...o f d~TrE(D°lD'(~))Trc (DolD'(F;~)) 

(here TrE± = TrRm+l - Trc). The fact that F = Fo + aF' is volume preserving 
(to first order in a) is expressed by TrRm+l (DolD'(~)) = 0, hence 

/ d~ Z ( u  (i}', Dol D' (~)G(~ )u (i)) 
i 

o o  

= E f d(Tr E (Do 1 D'(()) Tr E (Do 1 D' (F~ ¢)) , 

where the last step used the invariance of d~ under F~. 

and introducing this in (4) yields 

La - (mlA1 +"" + m~A~) =a 2 d(~rE(DolD'(()) TrE(DolD'(Fg()) 

(5 )  = 2 ~ = - ~  d~E(D°ID'(~)) ~c(Dg~D'(Fg~))' 

| 

10. P roo f  of T h e o r e m  1 

We use Proposition 9, the corresponding result with F replaced by F -1, and the 

fact that ~-]-~=1 A(e) = 0 (because F is volume preserving). This gives an estimate 
of all the sums of A (e) that occur in Theorem 1. | 
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11. C o r o l l a r y  

In the situation of Theorem 1, the central Lyapunov exponent is 

= -~- d~ [TrU(DolD'(~)) Tr~(DolD' (F;~) )  

- TrS(DolD'(~)) TrS(DolD'(Fg~))] 

= ~ d([Tr~(DolD'(~)) - Tr~(DolD'(¢))]  Tf f (DolD' (Fg~)) ,  

where Tr 8, Tr u, Tr ~ denote the traces over the spectral subspaces g s, E u, g c of 

Do corresponding to eigenvalues < 1, > 1, or = 1 in absolute value (E c is one 

dimensional). 

Since F preserves the volume, the sum of all Lyapunov exponents vanishes. 

Therefore A c is minus the sum of the negative Lyapunov exponents, given by (5), 

minus the sum of the positive Lyapunov exponents. Note that replacing F by 

F - l ,  £;s by £~ (and, to the order considered, D'(¢) by - D ' ( ¢ ) )  replaces the sum 

of the negative Lyapunov exponents by minus the sum of the positive exponents. 

This gives the first formula for A ¢. 

To obtain the second formula, express Tr ~ Tr ~ - Tr ~ Tr s in terms of Tr ~ =k Tr ~, 

and remember that (because F preserves the volume) Tr ~ + Tr ~ + Tr ¢ = 0 when 

applied to DotD'(~) .  | 

The above formula (5) takes a particularly simple form in a special case de- 

scribed in the next theorem. 

12. T h e o r e m  

Let • be a hyperbolic automorphism o f T  m, with stable and unstable dimensions 

m s andre  u = m - m  s , and with entropyA~. Let Y : y - 4  y + a  (mod 1) b e a  

translation of T,  and ¢: T TM -4 T a group homomorphism ~ O. Finally, let 

~: T -~ R TM be a nullhomotopic C 2 function. 

Define h, ga: T TM × T -4 T m × T by 

¢ ( I ) x - ¢ x ) '  g a ( ~ ) =  ( x÷a~(y)(m°dl))y 

and let fa = ga o h. 

Denote by As (resp. 1~) the sum of the smallest m s (resp. the largest m u) 

Lyapunov exponents for (fa, volume). Also let A~ = -A~ - A~ be the "central 
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exponent". Then A~, A~, )~ have expansions of order 2 in a: 

u a2 /T ~ = -~0 + ~- d~ ( (V¢)¢ '~(y) )  ~ + o ( ~ ) ,  

aX -- A~ - 7 dy ( (V¢)e '~ (y ) )  2 + o(a2), 

A~ = -5- dy [ ( (V¢)~'~(y) )  2 - ( (V¢)¢ ' s (y ) )  ~] + o(a~). 

Here, ¢~(y)  and ¢~(y )  are the components of the derivative ¢~(y) C R ~ in the 

stable and unstable subspaees £~ and £~ for ~. Also, we have used V¢: R m ~ R 

to denote the derivative of  the map ¢: T m --+ T with the obvious identifications. 

This theorem is a simple (but nontrivial) extension of the result proved by Shub 

and Wilkinson [17]. In the situation that they consider • -- (~ 11), J =identity, 

¢ -- (1, 0), ~ '  = ¢'u. [Remark that,  in the notation of [17], 

u0 = ((1, 1).Vo)/(m - 1) = ((1, 0).v0), 

so that the formula given in Proposition II of [17] agrees with our result above.] 

Notation: We shall henceforth omit the (mod 1). We shall keep V to denote 

the derivative in T m. With obvious abuses of notation, the reader may find it 

convenient to think of • or V~  as an m × m matrix (with integer entries and 

determinant ±1), and ¢ or V¢ as a row m-vector (with integer entries not all 

zero). 

13. R e f o r m u l a t i o n  o f  the problem 

Note that  f~-i = h-1 o g~-l, where h -1, g~-i are obtained from h, g~ by the 

replacements ~, J, ¢, ~ --+ O-1, j - l ,  ¢, _¢ .  These replacements also interchange 

the stable and unstable subspaces for • and replace A s, A u by _ A u  _As. There- 

fore the formula for ~ in the theorem follows from the formula for ~8. And the 

fornmla for Ac = _As _ ~u also follows. To complete the proof of the theorem 

we turn now to the formula for A s. 

Define 

then 

x 

Y 
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so that 

L Y A P U N O V  E X P O N E N T S  OF  A T O R A L  M A P  

~a(~) =¢-1ga¢(;)= (y x~-a¢(y+dpx) 
- a(VO)~b(y + Ox)] 

Finally, F = Fo + aF ~ with 

~x + a~p(Jy + ¢~x) 

Jy - a(V¢)¢( Jy + ¢~x) ]" 

Fo \ j y ]  = \ - ( V ¢ ) ¢ ( d y  + ¢~x)]" 

Since F is conjugate (linearly) to fa, we may compute A s from F instead of fa. 

14. P r o o f  of  T h e o r e m  12 

Write R m+l = g 8 + g u + R. We shall apply Proposition 9 with g = gs, g± = 

g ~ + R .  Using ~ = (x,y) and X E gs, y E gu, Z E R we may write 

z \-WO)¢'(Jy + ¢~x)((v¢~)(x + v) + z ) / '  

where Cr denotes the derivative of ~b. Therefore 

TrE(P'(~)Do 1) = (V¢)~b'S(jy + ¢~x) 

and (5) contains the integrals 

f d~ (D o (~)) TrE (D o (F~)'~)) Trc 1 D'  1 D'  

= J" d([(VO)¢'s(.]y + O~Px)][(V¢)¢ls(Jn+'y + ¢~n+lx)].  

Performing a change of variables 2 = ~x, ~ = Jy + ¢~x we find that this is 

/ d2d~[(VO)g,'~(~l)][(V¢)~'s(Jn~ + 0~n2 - -  ¢2)]. 

We claim that this last integral vanishes unless n = 0. This is because, if n ¢ 0, 

/ d2'O'(Jnfl + ¢~n2 - 02) = 0. 

Indeed, ¢~n2 - ¢~ is a linear combination with integer coefficients of the com- 

ponents x l , . . . ,  2~ of 2, and the coefficients do not all vanish because ¢~n = ¢ 
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is impossible (~ is hyperbolic and ¢ ¢ 0). Integrating the derivative ¢ '  with 

respect to a variable 5:j really occurring in ¢~e5: - ¢5: gives zero as announced. 

Returning to (5) we have thus 

A~ + A~ = - f  d~(Trc(DolD'(~))) 2 

°2f = 2, 

which is the formula given for A~ in Theorem 12. And according to Section 13 

this completes our proof. | 

15. Final  r emar ks  

(a) Shub and Wilkinson [17] showed that  close to a diffeomorphism (hyperbolic 

automorphism ~ of T 2) x (identity on T)  there is a C 1 open set of ergodic 

volume preserving C 2 diffeomorphisms of W 3 with central Lyapunov exponent 

A c > 0. They remark that their result extends to the situation where • is 

a hyperbolic automorphism of T m with one-dimensional expanding eigenspace. 

More generally, if • is any hyperbolic automorphism of W TM, Theorem 12 gives 

close to (~, rotation o f T )  in C2(T re+l) a diffeomorphism F with A c > 0. Since A c 

is given by an integral over the volume of a local "central" stretching exponent, 

we have A c > 0 in a C 1 neighborhood of F. But by a result of Dolgopyat 

and Wilkinson [8] (Corollary 0.5), stable ergodicity is here C 1 open and dense 

in the C 2 volume preserving diffeomorphisms (C 1 is improved to C k in [12]): 

we have center bunching and stable dynamical coherence because we consider 

perturbations of (~, rotation of T)  for which the center foliation is C 1, see [10], 

[13]. In conclusion, close to (hyperbolic automorphisrn ~ of T m) x (rotation on 

T)  there is a C 1 open set V of ergodic volume preserving C 2 diffeomorphisms 

of W m+l with central Lyapunov exponent A c > 0 (or also with A c < 0). In 

particular, if F C V, the conditional measures of the volume on the circles lr-1 {x} 

are atomic, as discussed in [16]. 

(b) The coefficient L in Proposition 9 is _> 0. Consider indeed the unitary 

operator U defined by U¢ = ~P o F on L2(Tm+l,volume),  and let E(.) be the 

corresponding spectral measure, so that 

U -~- IT e2~ri°E(dO)" 

If ¢(~) = TrE(DolD'(~))  we have a m e a s u r e ,  > 0 on T defined by ,(dO) = 
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(~, E(dO)~) and the Fourier coefficients 

cn = / e27rniOp(dO) = / d~ Trc( Dol D' (~) )(Dol D' ( F~) ) 

of this measure tend to zero exponentially. Therefore v(dO) = p(O)dO has a 

smooth density p and 

1 ~--~ 
L =  ~ c,~= p(0)>_0. 

n = - - o c  

(c) Suppose now that F is not necessarily a volume preserving perturbation of 

F0. We may still hope that  F has an SRB measure p~. If F0 were hyperbolic, we 

would have an expansion 

P~ = Po + a5 + o(a) 

(see [15]) with P0 = Lebesgue measure and 5 a distribution. For smooth ~, 5(~) 

is given (because P0 is Lebesgue measure) by the simple formula (see [15]) 

o o  

S(~) = - E P0((~ o Fg).  div(F '  o F o ' ) ) .  
0 

Similarly, replacing F by F -1, hence Fo, DolD'(~) by F0 -1, -D'(Fol~)Do 1, we 

see that the anti-SRB state has an expansion 

fia=Po+a~+o(a) 

with 
c o  

[)(q2) -~ E f d~(F°n~) TrR'~+~ (D'(Fol~)Do 1) 
n-----1 

o o  

We can now estimate the Lyapunov exponents for (F, Pa) to second order in 

a even though we are not sure of the existence of the SRB measure p~. We 

simply assume that we can use the formula for 5(~). Going through the proof 

of Proposition 9 we have to replace f d~logN(~, a) by p~(logg(. ,  a)) and (to 

second order in a) this adds to the right-hand side of (4) a term 

o c  

E / d~ Trs(DolD'(~)) Tr~t.,+~ ~ a 2 (DolD'(~)) .  
n = l  
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Taking into account the integrations by parts we obtain now instead of (5) the 

formula 

a2 ~ / 
La - (mlA1 + " -  + tatar) = ~ E d~ Trg(DolD'(~)) TrE(DolD ' (F~) )  

~ . = - - 0 0  

(6) - a2 E f d¢TrE(Do 1D'(¢))TrR~+I(DolD'(F~))" 

Let a2L s, a2L u, a2L c be the a 2 contributions to the sum of the noncentral 

negative, noncentral positive, and the central Lyapunov exponents for the SRB 

measure. We obtain a2L ~ from (6) when n~ = n ~. A similar calculation gives 

a2L u (it is convenient here to work via the anti-SRB measure, then replace F 

by F - i ) .  Estimating the average expansion coefficient gives a 2 (L ~ + L u + L ~) = 
pa(logdet(Do + aD'(.)), hence L s + L u + L ~, hence L c. The results are 

LS 1 ~ f d (Tr~(DolD, (~) )Tr~(DolD, (F~))  

O()  

- f de YS(DolD'( )) TrRm+~(DolD'(Fg~)),  
n=--~ 

= - _  Tr u Dol  D ' Tr ~ Dol  D t 
2 ' 

L~ = - -21 ~ f d(TrC(DolD,(( ) )Tr~(DolD,(Fg()  ) 

0<3 

- E 
n ~ - - O 0  

L~ + L~ + L~ = - -21 ~ f d~TrR.~+~(D$ID,(O)Trr~+~(DolD,(Fg()), 
n ~ - - - O 0  

which can be rewritten variously. 

In view of recent work [4], [1], [6], it seems reasonable to conjecture that if the 

above L c is # 0, then there exists an SRB measure for (small) finite a. 
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